
Name and UNI:

Making, Breaking Codes, Midterm 1

This examination booklet contains 6 problems. Do all of your work on the pages of
this exam booklet. Show all your computations and justify/explain your answers.
Cross out anything you do not want graded.

If there is a mistake in the question or if you are not sure what something means,
just make a guess, explain what is going on in your answer, and continue.

You have about 75 minutes to complete the midterm. Do not begin until instructed
to do so. When time is up, stop working and close your test booklet. Books, notes,
calculators, cell phones, headphones, laptops, and other electronic devices are not
allowed.
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1. Using the correspondence A “ 0, B “ 1, ..., Z “ 25 use the affine cipher
x ÞÑ ´x ` 5 pmod26q to encrypt the plaintext “ax” into a ciphertext (written in
terms of capital letters). Explain your work.

Solution:
Note that a “ 0 and x “ 23. Then

0 ÞÑ ´0` 5 ” 5 pmod 26q,

23 ÞÑ ´23` 5 “ ´18 ” 8 pmod 26q.

Since F “ 5 and I “ 8, the plaintext ‘ax’ is encrypted as ‘FI’.
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2. Compute the multiplicative inverse of 7 modulo 705. Use either the Euclidean
algorithm or the extended Euclidean algortihm and show your work.

Solution:
The Euclidean algorithm that computes gcdp7, 705q is done as follows:

705 “ 7p100q ` 5

7 “ 5p1q ` 2

5 “ 2p2q ` 1

2 “ 1p2q.

We then back-substitute:

1 “ 5´ 2p2q

“ 5´ p7´ 5qp2q “ 7p´2q ` 5p3q

“ 7p´2q ` p705´ 7p100qqp3q “ 7p´302q ` 705p3q.

Thus,
7p´302q ” 1 pmod 705q,

or
7p403q ” 1 pmod 705q.

The inverse of 7 pmod 705q is 403.
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3. Explain why a36 ” 1 pmod481q for any integer a with gcdpa, 481q “ 1 using
that 481 “ 13 ¨ 37 and using the Chinese remainder theorem.

Solution:
Since gcdpa, 481q “ 1, we have gcdpa, 13q “ gcdpa, 37q “ 1. Note that 13, 37 are

prime numbers. It follows from Fermat’s Little Theorem that

a36 “ pa12q3 ” 1 pmod 13q,

a36 ” 1 pmod 37q.

By the fact that gcdp13, 37q “ 1 and the Chinese Remainder Theorem,

a36 ” 1 pmod 481q.
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4. Answer the following questions about RSA.
(a) Briefly describe the RSA public key cryptosystem. You must state the public
information, the secret decryption key, and how to encrypt and decrypt messages.

Solution:

(1) Bob chooses two large distinct prime numbers p and q.
(2) Bob chooses an integer e such that gcdpe, pp´ 1qpq ´ 1qq “ 1.
(3) Bob computes d such that ed ” 1 pmod pp´ 1qpq ´ 1qq.
(4) Bob computes n “ pq.
(5) Bob makes pn, eq public and keeps pp, q, dq secret. d is the secret de-

cryption key for Bob.

Now, suppose Alice wants to send Bob a message m. We may assume m ă n.
Otherwise, Alice breaks m into blocks in which each of them is smaller than n.

Encryption (for Alice): She computes c ” me pmod nq and sends c to Bob.

Decryption (for Bob): He computes cd pmod nq to recover the message m.

(b) What (supposedly) hard number theory problem does the security of RSA rely
on?

Solution:
Existence of efficient (polynomial-time) algorithm for prime factorizations of

large integers.



6

5. You are given that 5 is a primitive root modulo 97 and you are given that

232 ” 35 pmod 97q, 332 ” 35 pmod 97q, 432 ” 61 pmod 97q, 532 ” 35 pmod 97q.

Let x be the smallest positive integer such that 5x ” 2 pmod 97q. Explain how to
use the Pohlig-Hellman algorithm to determine x pmod 3q.

Solution:

Note that
97´ 1 “ 96 “ 25 ¨ 3.

It is given that

2
97´1

3 “ 232 ” 35 pmod 97q.

For k “ 0, 1, 2, we consider

5
97´1

3 k “ 532k pmod 97q.

Since

532p0q ” 1 ı 35 ” 232 pmod 97q,

532p1q ” 35 ” 232 pmod 97q,

we have x ” 1 pmod 3q by the Pohlig-Hellman algorithm.
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6. Let p be a prime number.
(a) Precisely define what is a primitive root modulo p.

Solution:

There are a couple of possible definitions: we say α is a primitive root pmod pq
if

(1) α is a generator of the group pZ{pZqˆ, or
(2) α satisfies the property that:

tαx : 1 ď x ď p´ 1u “ t1, . . . , p´ 1u,

or
(3) The smallest x P t1, . . . , p´ 1u for which αx ” 1 pmod pq is p´ 1.

(b) How many primitive roots modulo p are there?

Solution: There are φpp´ 1q primitive roots pmod pq.

(c) Find all the primitive roots modulo 7.

Solution:

There are φp7´ 1q “ φp6q “ 2 primitive roots pmod 7q.

(1) Since 23 ” 1 pmod 7q, 2 is not a primitive root pmod 7q.
(2) Since 31 ” 3 ı 1 pmod 7q, 32 ” 2 ı 1 pmod 7q and 33 ” 6 ı 1 pmod 7q,

3 is a primitive root pmod 7q.
(3) Since 43 ” 1 pmod 7q, 4 is not a primitive root pmod 7q.
(4) Since 51 ” 5 ı 1 pmod 7q, 52 ” 4 ı 1 pmod 7q and 53 ” 6 ı 1 pmod 7q,

5 is a primitive root pmod 7q.
(5) Since 62 ” 1 pmod 7q, 6 is not a primitive root pmod 7q.

Therefore, the primitive roots pmod 7q are 3 and 5.


