
MATH UN3025 - Midterm 1 Solutions

1. (10 pts.) Suppose you have a language with only 3 letters: A,B, and C, which occur with
frequencies 0.7, 0.2, and 0.1, respectively. The following ciphertext was encrypted by the Vigenère
method:

BABABCBCAC.

Assume that the key length is either 1, 2, or 3. Find the most likely key length and determine the
most likely key using the method from class.
Solution: We compare BABABCBCAC with its shifts by 1, 2, and 3, looking for overlaps. There
are no overlaps for a shift of 1 or 3, but there are 6 overlaps for a shift of 2. Thus we expect the
key length to be 2.
Looking at every other letter, we see BBBBA and AACCC for the letters in even and odd positions,
respectively. Due to the overwhelming frequency of the letter A in the language, we can reasonably
assume that B decrypts to to A in the first sequence and C decrypts to A in the second. This gives
us the key BC.
2. Solve the following problems about modular arithmetic.
(a) (5 pts.) Use the Euclidean algorithm to find the greatest common divisor d of the numbers 123
and 270.
Solution: The Euclidean algorithm gives

270 = 2 · 123 + 24

123 = 5 · 24 + 3

24 = 6 · 3.

This means that d = 3, the last nonzero remainder.
(b) (5 pts.) Use the extended Euclidean algorithm to write the number d from part (a) as

d = a · 123 + b · 270

for some integers a, b.
Solution: Use the extended Euclidean algorithm.

x0 = 0, x1 = 1, x2 = −2 · 1 + 0 = −2, x3 = −5 · (−2) + 1 = 11.

y0 = 1, y1 = 0, y2 = −2 · 0 + 1 = 1, y3 = −5 · 1 + 0 = −5.

So 11 · 123 − 5 · 270 = 3.
(c) (5 pts.) Find all solutions x (mod 270) to the linear equation

123x ≡ 6 (mod 270).

Solution: Divide by 3 to get 41x0 ≡ 2 (mod 90). We divide 11 · 123 − 5 · 270 = 3 by 3 to get
11 · 41 − 5 · 90 = 1, so 41−1 ≡ 11 (mod 90). Thus x0 ≡ 2 · 11 ≡ 22 (mod 90), and the solutions are
22, 22 + 90 = 112, and 22 + 180 = 202 (mod 270).
3. (5 pts.) What are the last two digits of the number 4321642?
Solution: Reduce 4321 modulo 11 and 642 modulo φ(100) = 40 to get 212 ≡ 41 (mod 100).
4. (10 pts.) Use the Chinese Remainder Theorem to find a number x modulo 5 · 7 · 8 = 280 such
that

x ≡ 1 (mod 5), x ≡ 2 (mod 7), x ≡ 3 (mod 8).

Solution: Use the method from class, with m1 = 5,m2 = 7,m3 = 8, a1 = 1, a2 = 2, and a3 = 3.
We have

z1 = m2 ·m3 = 56, z2 = m1 ·m3 = 40, z3 = m1 ·m2 = 35,
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y1 = 56−1 ≡ 1 (mod 5), y2 ≡ 40−1 ≡ 3 (mod 7), y3 ≡ 35−1 ≡ 3 (mod 8).

Then we calculate

x = 1 · 56 · 1 + 3 · 40 · 2 + 3 · 35 · 3 = 56 + 240 + 315 = 611 ≡ 51 (mod 280).

5. Answer the following questions about the ElGamal cryptosystem.
(a) (2 pts.) State the ElGamal public key cryptosystem.
Solution: Bob’s public key is (p, α, β) where α is primitive mod p and β ≡ αa (mod p) for some
private integer a.
To encrypt m, Alice picks a random integer k, computes r ≡ αk (mod p) and t ≡ mβk (mod p),
and sends (r, t) to Bob.
Bob decrypts by calculating m ≡ r−a · t (mod p).
(b) (2 pts.) State the Computational Diffie Hellman Problem (CDHP).
Solution: Fix (p, α), where α is primitive mod p. Given αx and αy (mod p), the CDHP is to
compute αxy (mod p).
(c) (6 pts.) Explain why breaking the ElGamal cryptosystem is equally hard as solving the CDHP.
Solution: Given a box that breaks ElGamal, plug in β = αx, r = αy, t = 1, so a = x. Then the
output will give r−a · t ≡ α−xy (mod p). One can now compute the inverse to get αxy (mod p).
Given a box that breaks the CDHP, plug in αa ≡ β (mod p) and αk ≡ r (mod p) to get αak

(mod p) out. Then compute the message as (αak)−1 · t (mod p).
6. (10 pts.) Use the Pohlig-Hellman algorithm from class to find the discrete log L2(11) for the
prime p = 13. You may assume that 2 is a primitive root modulo 13.
Solution: 13 − 1 = 22 · 3. Let β = 11.
First consider qa = 22. Write x ≡ x0 + x1 · 2 (mod 4). Since 2 is primitive, 2

13−1
2 ≡ 26 ≡ −1

(mod 13). We have β
p−1
q ≡ 11

13−1
2 ≡ (−2)6 ≡ −1 (mod 13), so x0 = 1. We define β1 ≡ β · α−x0 ≡

11 · 2−1 ≡ 11 · 7 ≡ −1 (mod 13). Then β
p−1

q2

1 ≡ (−1)3 ≡ −1 (mod 13), so x1 = 1 as well. This gives
x ≡ 3 (mod 4).

Now consider qa = 31. Write x ≡ x0 (mod 3). We have α
p−1
3

x0 ≡ 24x0 ≡ 3x0 (mod 13). For

x0 = 0, 1, 2, we respectively have 3x0 ≡ 1, 3, 9 (mod 13). We have β
p−1
3 ≡ (−2)4 ≡ 3 (mod 13), so

we must have x0 = 1, or x ≡ 1 (mod 3).
We use the CRT to deduce from x ≡ 3 (mod 4) and x ≡ 1 (mod 3) that x ≡ 7 (mod 12).
Extra credit. Suppose that Alice has encrypted and sent a message m to Bob using RSA, where
the public key is (n, e). Assume that n is very large, but m is short, approximately around 1017.
(a) (4 pts.) If Eve has intercepted the ciphertext c, explain how she can use the short plaintext
attack from class to try to find m.
Solution: For each 0 ≤ x < 109 and 0 ≤ y < 109 calculate cx−e and ye (mod n). Check efficiently
whether there is a match between the two lists, e.g. by sorting the first list and doing binary search
for each member of the second. If cx−e ≡ ye (mod n), then c ≡ (xy)e (mod n), which implies
m ≡ xy (mod n) or m = xy.
(b) (1 pt.) Explain why this attack is faster than encrypting all possible m’s of size around 1017.
Solution: The attack requires on the order of 2 × 109 computations (multiplied by a log factor
coming from sorting/binary search), which is far smaller than the 1017 calculations required to
encrypt all possible m’s.
(c) (1 pt.) Explain the conditions on m for this attack to be successful.
Solution: The number m must be a product of two numbers, x and y, in the range 0 ≤ x, y < 109.
Not all m’s have this property – for instance, if m has a prime divisor larger than 109, this is
impossible. Conversely, if m is equal to such a product, the algorithm will find m.
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