Exercises VIII

1. A derivation of a ring R is a map $D: R \rightarrow R$ such that $D(x+y)=D(x)+D(y)$ and $D(x y)=$ $x D(y)+D(x) y$. Note that the zero map $D(x)=0$ is a derivation of any ring.
(a) Show that if $R=\mathbf{Z}, R=\mathbf{Q}$, or $R=\mathbf{Z} / n \mathbf{Z}$ then the only derivation of R is the zero derivation. (Hint: show that $D(1)=0$ for any derivation of any ring.)
(b) Show that any derivation of $\mathbf{Z}[x]$ is of the form $D=g \mathrm{~d} / \mathrm{d} x$ for some $g \in \mathbf{Z}[x]$.
(c) Let $f \in \mathbf{Q}[x]$ be a polynomial and let $R=\mathbf{Q}[x] /(f)$. For which f does R have a nonzero derivation?
2. Let $K=F(\alpha) / F$ be a primitive algebraic extension of fields of characteristic p. A derivation of K over F is a derivation D of K such that $D(a)=0$ for all $a \in F$. We use the notation $\operatorname{Der}(K / F)$ to denote the set of derivations of K over F.
(a) When does K have a nonzero derivation D over F ?
(b) Consider the subfield $F \subset L \subset K$ defined by the rule

$$
L=\{x \in K \quad \mid \quad D(x)=0, \forall D \in \operatorname{Der}(K / F)\} .
$$

Characterize L in terms of α and $\operatorname{Irr}(\alpha, F)$.
3. Prove that

$$
\mathbf{Q}=\mathbf{Q}\left(\left(2+\frac{10}{9} \sqrt{3}\right)^{1 / 3}+\left(2-\frac{10}{9} \sqrt{3}\right)^{1 / 3}\right)
$$

4. Show that in a finite field every element is the sum of two squares.
5. Let F be a field of characteristic $p>0$, and let $a \in F$. Show that $X^{p}-X+a$ either splits completely over F or is irreducible over F.
6. What is the Galois group of the polynomial $3 x^{6}-12 x^{4}+4 x^{3}+12 x^{2}-8$ over \mathbf{Q} ? (This should be pretty tough! Feel free to use computer algebra to find the answer, but try to write up the arguments by hand. For example, write the roots as $\alpha_{1}, \ldots, \alpha_{6}$ and try to find expressions in them which are in \mathbf{Q} to restrict the size of the Galois group.)
