Exercises VII

1. Construct subfields of \mathbf{C} which are splitting fields of the following polynomial over \mathbf{Q} :

$$
X^{3}-1, X^{4}+5 X^{2}+2, X^{6}-8
$$

What are their degrees over \mathbf{Q} ?
2. Construct the splitting fields over \mathbf{F}_{3} for the following polynomials:

$$
X^{3}+2 X+1, X^{3}+X^{2}+X+2
$$

Are these fields isomorphic?
3. Which of the following extensions are normal?

$$
\mathbf{Q}(X) / \mathbf{Q}, \mathbf{Q}(\sqrt{-5}) / \mathbf{Q}, \mathbf{Q}(\alpha) / \mathbf{Q}, \mathbf{Q}(\alpha, \sqrt{5}) / \mathbf{Q}(\alpha)
$$

Here α is a real seventh root of 5 .
4. Construct the normal closures of the following extensions:

$$
\mathbf{Q}(\alpha) / \mathbf{Q}, \mathbf{Q}(\beta) / \mathbf{Q}, \mathbf{Q}(\sqrt{2}, \sqrt{3}) / \mathbf{Q}, \mathbf{Q}(\gamma, \sqrt{2}) / \mathbf{Q}, \mathbf{Q}(\delta) / \mathbf{Q}
$$

Here $\alpha^{5}=3, \beta^{7}=2, \gamma^{3}=2$ are real solutions and δ is a root of $X^{3}-3 X^{2}+3$.
5. Find the Galois groups over \mathbf{Q} of the extensions you constructed in exercise 4 .

