THIS DOCUMENT IS BEING TRANSMITTED FROM

CORNELL UNIVERSITY’S OFFSITE FACILITY

IF YOU ARE REQUESTING A RESEND,

PLEASE ARIEL THIS SHEET WITHIN 2 DAYS TO:

128.253.125.206
RLIN OR OCLC ILL NUMBER
RLIN OR OCLC SYMBOL
PAGES TO RESEND
REASON
ANNEX LIBRARY
CORNELL UNIVERSITY

PHONE: 607-253-3431

ARIEL: 128.253.125.206




Cornell Library Annex Interlibrary Loan

From: Qlin Interlibrary Services <olin-ils-lending@cornell.edu>
Sent: Friday, October 19, 2012 11:51 AM

To: Cornell Library Annex Interlibrary Loan

Subject: ILL Request TN994070

__humber of scans/.tiff document posted on server

COPY REQUEST - TN: 994070

Please send the following volume OR photocopy of the cited article to:
INTERLIBRARY SERVICES, OLIN LIBRARY

Location: Library Annex
CALLNUMBER: +QC1 .T85

JOURNAL or MONOGRAPH TITLE: Arkiv for det Fysiske seminar i Trondheim.
VOL/ISSUE/DATE/PGS: 11 1968 1-22

ARTICLE:  On certain Toeplitz-like matrices and their relation to the

ILL number: ZYU 96148153 Patron: HUTCHINS, CAROL
Requesting Library:
Elmer Holmes Bobst Library
Interlibrary Loan, LL2-33B
New York University
70 Washington Square South
New York, NY 10012-
Ariel: Fax: 212 995-4071
Odyssey: 128.122.149.123

Request type: RLG 50.00iFM

NOTICE: THIS MATERIAL MAY BE PROTECTED BY COPYRIGHT LAW (TITLE 17 U.S. CODE)

If you are unable to fill this request, please check one of the reasons below:

_ __Inuse

__ Inprocess

__Llost

___Non-circulating

___Notowned

___Onorder

___Atbindery 8&"’3
____Lack volume or issue

___Not on shelf ,0/ ﬂ/[?

On reserve




S

G

ES

PERIODICAL

™

Arkiv for Det Fysiske Seminar i Trondheim

No 11 - 1968

On certain Toeplitz-like matrices and their relation %

to the problem of lattice vibrations®

by

Mark Kac**

’"YS’CAL SCIENCES
JAN 28 1968

LIBRARY.

*Based on a lecture given at the Trondheim Theoretical Physics

Seminar on September 13, 1968.

e 10021, U.S.A.

Address: Rockefeller University, New York, N.Y.




10

coupled by springs of equal strength but with possibly

differing masses.

only,

H=

the Hamiltonian of the system is

2 N-1
p® K2 2 )?
oms * D ? (xk+1=-%k )% &

w M=

As is well known the frequencies of the normal modes

Consider a one dimensional chain of harmonic oscillators

Allowing for nearest neighbor interactions

(1.1)

Wy, Waseeey W can be obtained by solving the determinantal

N
equation
z-mlwz, "K:z, o 9 O, eo0o g O
-Kz, 2"11120)2, -/Cz, O, seeaaces e O
AN= 80000009 0000908 0e®e®adgtetesoesc

..-.v--oo-nlc.,OOQO,.“.!C.DOOIOQ

o , 0 5, 0 yeee =K2, 2-me2

[

(1.2)

and that if our chain is in thermal equilibrium at absolute

temperature

function is

N oo -(n+%)hws/kT
QN I Z e -
S=1 Nn=0

= € — —Fw /KT
s=1 A k
1=-e
N ~Aw_/xT
S log(1-e

-% Saw /KT gy

)

T then the (quantum-mechanical) partition

(1.3)'




Let NHN(w) be the number of freguencies w_  which are smaller

than w 1i.e.

HN(w)=I1—q o1, (1.4)

CUS<(.!)

Then we have

_N & f [ Ao /KT

o = 5 XD wdHN(w) ehg.log(1-e )dHN(w) ‘

If as N — o we have 2
%
|

Hy(w) —> H(w) (1.5)

(in the usual sense of convergence of distribution functions)
then we obtain in the thermodynamic limit (N — o) the

following formula for the free energy ¥ per mode

- ﬁ% = -Eg% [ wdH(w) + /.log(1—e_hw/kT)dH(w)- (1.6)

Thus the thermodynamic properties of our chain will be
completely determined if we know the spectral distribution

function H(w) or, if H 1is absolutely continuous, the

spectral density

) =&, (1.7)




2°, We shall consider in the sequel two cases

(a) The "continuous case” in which mk = m(%) , where

m(t) is a reasonably smooth function
and

(0) The "purely random case” in which misMzseee, By
are independent random variables having the same

distribution function R(m) so that
Prob {mk < m} = R(m) .

The "continuous case” has been solved in even & more i
general setting by Kac, Murdock and Szegd [1], but we shall |
present here a different derivation because it is of some
irmd ependent interest and because it is closely related to the
approach we shall propose for dealing with the much more
difficult case (b).

Let us first of all choose units so that k%=1 &and note

that for & > 0 (more generally Ref > 0)

DN(ID1,II12,. X} ,mN;f) =

24miE, =1 0 ,e0e, O
“1 9 2+m2§, -1 goeo0ocy 0

0, =1, 2#ma€,ees » O (2.1)

!..000.00-000'0.090...0..-...'.

O, O,aoc-o..o “1, 2+mN§

N
2
= mimg...mN 821 (fws) °




It follows immediately that

1ogm1+...+ 1ogmN
lim N +

1

. 1
1im = log D
N-O [o o] N N N-ooo

N
.1 2
fﬁ{,‘i F o4 log(€ + %) (2.2)

+

/ log m(t)dt + [ log(E + w?)dH(w)

) o

i

end since H(w) can (in principle) be determined from the
transform

f 1og(€ + w?)dH(w) é

0

(see e.g. Dyson [2]) we see that all we need is the limit
.1

lim = log D

Naco N N

3

If m(t) is Riemann integrable it follows from a result

in [1] that

1im + 1log D =
im ¢ +°8 Yy T
Nace
) - (2.3)
= [dt -2% / log(2+Em(t) - 2cos6)dd , :
o -
whence i
[o.0)
/)1og(§ + w?)dH(w) =
o
° (2.4)

1 T —
1 2(1=cosb) 40
]dt > f log[§ +—-m—(TtT">'Jd
-

0




B

and consequently

| Hw) = o u{/&;ﬁﬂ <o), (2.5)

where u denotes the ordinary (Lebesgue) measure of the set

defined inside the braces, with the understanding that
0<tg?1 and -7 < 6 <m .

To see how (2.3) comes about we start with the familiar

formula
. N R N;1( 2 !
‘ -Eomp Xk = 2 (Kk41—Xk
__1—-— - 1 N f"./ e 1 e 1 dxi"' de (2.6)
;ﬁﬁ& (Jﬁ) e \
t
and setting
"%fmlxz )2 ——12_§m1 +1 y2
Kl(x,y) = Le e (x¥)% o (2.7)
T
we see that @
o 1 .
2= 5: [.../ e-§§m1xi Ki(xisxz)KB(X29X3) ceoes E
ND N !
N - 1 R (2.8)
‘Emexi ‘
TN ) d o
om0 KN—'1 (XN_1 ’XN) € dxi XN

Instead of the familiar situaticn in which a fixed kernel 1is
jterated we have here a situation in which the ksrnel changes %
as it is being iterated.

Let us first assume that m(t) 1is a step function.

In other words let us assume that the interval (0,1) is

divided into intervals la, Azs eess Bn (which together




—

exhaust (0,1)) and that

m(t) = m(k) if t is in Mk s K = 152560657 o
(2.9)

|

If we set now

(1) 2 _1(1)e 2
(l)(x’y) - 3: om T ExR ~(y-x)F ey

T
we see from (2.8) that the kernel K(ﬂ) is iterated NIAil
times (|A¢| denotes the length of Ax) ; the kernel K(2)
is iterated N|Az| times etc.

It is now easy to convince oneself (and the rigor is

easily supplied) that for large N one has

L N TR TN
s (1) 2) 0t M)

(2.10)

where (1) is the maximum eigenvalue of K(l) and the constant
C is of order 1 and comes from connecting different iterates
across the discontinuities.

It therefore follows that

1

. _ r o
lim i log Dy = =2 k§1|Akl log Ny = 2] log N(t) 4t , (2.11)

Naoo
]

where A(t) is the maximum eigenvalue of the kernel

4 e-%m(t)§x2e-(y-X)ze—%m(t)fy2 . (2.12)
T

) Observing that the principal eigenfunction is of the form

exp(-by?) one obtains easily that




T

- 7'
| 246 (t)+ NTZRRCEPZ "2
m + N (2 -
Nt) = ( St ) (2.13)
and consequently |
1 i
2- H
lim ¢ log Dy = /1og(2+§m(t)+ ;_/(2+§m(t)) Hat . (2.14)
N-’OO
(o}
This is equivalent to (2.3) since, as it is easily
checked,
T ;
—
gﬁ [ log(2+m - 2cos6)dé = log 2+imy '(gigm] 2,
i ;
|

Having proved (2.3) for step functions it is an easy
matter to extend it to arbitrary Riemann integrable functions.

All one has to do is to recall that for every € > 0
and every Riemann integrable m(t) one can choose two step

functions m;(t) and m;(t) such that
- +
ms(t) < m(t) < me(t)

and

/ (mf(t) = mg(t))at < o .

From (2.6) one sees then that DN-Z for m(t) is

[V

- -
contained between, Dy 2 for m;(t) (from below) and Dy

for m;(t) (from above).

If one assumes that m(t) is twice differentiable with

bounded m"(t) then much more can be proved (see a note of

ours "Asymptotic behaviour of a class of determinants" to




appear in a forthcoming volume of Enseignment Mathématique

dedicated to the memory of Jean Karamata where we use an
extension of the method described here, cr a paper by Mejlbo and
Schmidt in Mat.Scand. 10 (1962) pp.5-16 where a much more

general result is proved by an entirely different method).

3°. Much more difficult and also more interesting is the
"purely random" case. Here no wholly satisfactory solution
exists although much progress has been made since Dyson’s
pioneering paper [2]. The most important contributions are
reprinted in Lieb and Mattis, "Mathematical Physics in One
Dimension" and interesting numerical results can be found in
[3] ana [4].

Here we propose yet another approach but warn the reader
that an important point of rigor is left unsettled.

It would be more convenient to introduce the periodic

boundary condition so that the Hamiltonian is

2
K

Mk

H =

v =
rd

N
Lall o =

33 (Xesa= Xk) X4 = %4 ?
and the determinant DN has to be modified by inserting -1
in the upper right and in the lower left corners.

Of interest now in the average spectral distribution

(g (@) (3.1)




9.

and we now have
1 (log Dy) = (log m} + fmlog(fw"’)d<HN(w)> . (3.2)

o

Hopefully
(Hy(w)) = H(w) (3.3)

and, as before,
1im & (log D) = (log m) + fwlog(§+w2)dﬁ(w) . (3.4)

Naoo

[¢]

It should be understood that the average (mathematical
expectation) is to be taken in accord with statistical
assumptions which we make about the joint distribution of
ml,mz,...,mN . The simplest assumption is that the masses

are independent random variables having the same€ joint distri-

bution R(u) i.e.

Prob.{mk < u} = R(u) . (3.5)
The most interesting case is the binomial case
u
R(u) = f [po(x-m) + a6 (x-MJjax (3.6)
)

with

p>0, a?> 0 .

i
—
-

Pp+a




4°., We begin again with formula (2.6), exgept that
N-1 N
% (xk4+1- Xk)? is replaced now by ?(xk+1— XKk )2 e

Teking averages of both sides and using independence of

the m’s we obtain

N
* -Emx, ® —emx®  ~B(Xk 41~k )
<$> = (\[1_)N fﬁoc/ (5] * ...e<e N> e 2 . dX1gvodX ]
N i 7T —0 o
(L4et)
and we have therefore
© N
(= = 2, N () (4e2)
Dy

where the Aj{1) are the eigenvalues (in decreasing order)

of the kernel

Kepy(ow) = = olen) & \o(ey®) (4.3)

Vi

and
2 -Emx*® > -Emx?
a(§x?) = (e ) = f e dR(x) - (Lelt)
o
It is an easy excercise to extend (4.2) and to obtain for
k = 2,3,.0.
oo
N
() = 2 N
WDy J=L

where again the Nj (k) are the eigenvalues (in decepeasing order)

but of the k~-dimensional kernel




K () (5,9) = <~/1 Vo) o ¥ Gy (4. 6)

)k

where “i” denotes the k-dimensional ®uclidean length of the
vector X .

We have therefore, asymptotically,

1 \K N
((==) > ~ N (x) (L.7) |
VDN ;
for k =1,2,3,... and the first question is, can one extend
(4.7) to non-integral exponents k ?
Since for integral k the principal eigenfunction is of

spherical symmetry one checks easily that N (k) 1is also the

maximum eigenvalue of the kernel

Ly (Pyp) =

k-1 k-1
2 2,72 ~(+0 Waer®)aler®) = LQrg) o (2r0) . (4.8)
= 1=0 (21)!T(1+ »)

In this form the kernel is perfectly well defined and even
Hilbert-Schmidt for all k > O .
Its maximum eigenvalue 1s also perfectly well defined

and we conjecture that for all k > 0 and large N

14" N(x L.

(L)' - a (k) (4.9)
Dy

with the understanding that, of cause, now A (k) 1is the

maximum eigenvalue of the kernel (4.8).

The conjecture appears to us extremely reasonable




because for the simple chain of equal masses,

G'(frz) = e-m§r2 9

it can be trivially verified. It would be quite strange if

for

o(er®) = pe T oM,

+ Q p+q =1,

it were to fail as soon as either p or q became different

from O .
Still we have no rigorous proof.

As a partial (and very weak) check we can mention that

as k —=> O
N(k) = 1.
This is easily shown by using the inequality
—§mmaxr2 =€y 3T

5. G(§P2) -<- e min .

If the conjecture (4.9) is correct and if, as seems likely,

one has
for small positive k we obtain (formally) that

1 —
lim 5 {log DN) = 20 (Le11)
Nevoo




R —-
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and the whole problem is therefore reduced to finding a .
It would be of considerable interest to investigate the
relationship between our approach and the approach of Dyson {2]

and Schmidt [5].

' 5%, We conclude with a brief account of an abortive attempt

to approach the Ising model by a method based on path L

integrals. Since the main difficulties are already present

in the one~dimensional case We chall restrict ourselves to

this case only. o

We write the usual partition function of the one-

dimensional Ising model in the form , {

N N-1 t

-a S p2 + v T pkHk+a
-aN & . k=1 k k=1 (5.1)

QN=8

=™

where a is sufficiently large to make the guadratic form

N o, N-1
a % Bk — V ? Mk Mk 41

positive definite (in other words & > v) and v , as usual,

is given by the formula

(5.2)

v = o
.—kT °

We rewrite QN in the form

o 2 N
o = e-aN[.../ e-aZuk+v2ukuk+1 Eé(uﬁ—1)dﬂ1...dﬂN (5.3)




and using the standard representation of the d6-function

b(uP=1) = oz /eig(“z'”df

)
we obtain in a few steps

(o]

N —i(Eq+e s o +Ey)
(]
=& ... €1 eo. O (5.4)
QN (ZKH—T)N a-1&1, '-lé’ s 05450 15 * X !
- Pz' ,a‘i§29“ 1}2"'9-*'-'- f

.o.'ooo'..ooo.clooo-o

Occttooocononoonoeoio

v .
0 9 0,0..- L a-1§N L

The square root of the determinant in the denominator
above causes nNo difficulty as long as a > V . It is now
tempting to hope that §1,§2,...§N can be thought of as
"jying along a curve" i.e. we *hink of Ek as being E(k/N)
where &(t) , O<tgt , is a peasonably "smooth" function.

If this is so then by a slight extension of the result

discussed in §2 the denominator of the integrand in (5.4) is

asymptotically
1 T -
exp [ﬁ %% %[dt [ log(a-i&(t) - vcos@)dﬁ} (545)
¢ o -
o =T

and the numerator is, of course, (again asymptotically)

i
-Nif £(t)at
e ° (5.6)




One can be still more optimistic and hope that the

integral in (5.4) is a discretization of a 'path integral so

that one may rewrite (5.4) in the form

1 s 7 :

ox N{-i]é(t)dt- Eﬁ [dt[ log(a-ig(t)—vcose)da} }‘

.__-:e o) o =T |
zEVESN e d(path) .

(5.7)

One can now attempt the method of steepest descent in

the space of paths.

This leads to the variati onal equation

6{-1/1§(t)dt- ﬁﬁ fidtf”log(a-if(t)—vcosﬁ)dO} =0 é
o o ;

and the only smooth solution is £(t) = const.
Tt then turns out that since £(t) must be real a ;

must be chosen in an essentially unique way and we finally end

up with the same result as that given by the spherical model

[6].

We have committed so many "opimes" that it is only just

that we have been "punished" by a wrong answer. Perhaps the

only surprising thing is that the answer is not wholly absurd

and, in part, quite reasonable for high temperature.

The main "crime" is no doubt the one pointed out many

years ago by the late T,H.Berlin namely that the &k’s Mie

along a smooth curve"’

Perhaps the failure of this attempt is one more reminder

that nature tends to be unkind to the mathematician, a

y Fourier.

profound observation first made D




|
|

(1]

[2]

[3]
(L]
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(6]
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PERIODICAL A

| Appendix to "On certain Toeplitz-like matrices and their
relation to the problem of lattice vibrations"
by Mark Kac. (Arkiv for Det Fysiske Seminar i
Trondheim, No 11 - 1968).

After a lecture I gave at Cornell University based on

j the material of the Trondheim lecture, Professor Kenneth G.
( Wilson of the Physics Department of Cornell University has ?
found a simple and elegant way of calculating « (see (L4.10)). if

with Professor Wilson’s permission I shall reproduce his &
calculation. ‘?

We start by writing e

| Ly (r,p) = %( £y (£)fx (p) + M (ry0) (8.1) j
r(3)

! i‘
| b
/ where %
|
k=1 - f

£ (r) = 2 & T WGEr?) (A.2) |

| and ?
f Mk (r, P) =
’ (4.3) §
2 2 5~ -r2 -p® NG(Er?) NG(Ep2) = r{1+ 2& (2rp)21 . i

v P e € ' 1=1 (21)!T(1+ ) ;

(k)

Let now ugk)(r) and %nk be the normalized eigen-
functions and eigenvalues of the kernel Mk (r,p) . The karnel

Mk(r,p) can be easily seen to be positive definite and we have

tHaiwoml SCHNCES

reg 1969




by Mercer’s theorem

(k) (k)

b(r,e) = 5 2 a0 () (a.1)

Let Ny (k) be the largest eigenvalue of Lx and let
be the corresponding eigenfunction.
(k)

Since unp form a complete set we can expand ¥ and

fk in them obtaining

¥(p) ~ 2 Yn ugk)(p)

fk(p) ~ 2 fgk)uék)(p)

Note also that as long as k>0 fk(p) eL? (0,0 ) so that the
standard L?® theory is applicable.

Since ¥ is an eigenfunction of Lk , and N (k) the
corresponding eigenvalue, we have (using (A.4) and the first

formula in (A.5)) that

o0

A ()Y (r) = ?221‘?5 £ (r) [ £ (o)¥(p)ap + El AN wd ) (r) . (A06)

2 o

K . .
Multiplying both sides of (A.6) by ug )(r) and integrating
we obtain

[0}

Nt = i o [ lavledes - Ny
\_2' ‘0
or
QI
n = = = i (p)¥(p)ap - (A.7)
TS EEWeY -xé”! ’

(A.5)




Using now Parseval’s relation

o

’/ fk(P)W(p)dp = noéi ¥n f'Sk)

we obtain almost at once that

Use has been made of the obvious fact that

[e2}

/fk(p)w(p)dp L C.

o]

oo 2 oo (k) (k)a
7\1(1{) =—2'l{—' Zfrsk) + 2 27\n fﬂ (K)
rg) * P& k) - M
and since
00 2 *°
s k) 2 / fo(r)dr =
n=1
0
f p? e-2r2 G(Er?)dr =
X X
[p(2+§m) 2, q(2+€w) ° 1 £ T (%)
we have
k (k) o(x)2
k 2 I

N (k) = p(2+§m).§ + q(2+~§M)-§ +

r(%) =1y (k) - M

18.

(A.8)

(A.9)

Formule (A.8) can now be rewritten in the equivalent form

(A.10)

If we now let k —> ¢ (through positive values) we see




immediately that

N (k) ~ 1= % [p log(2+&m)+ q log(2+M)] + k §i 1“gn £

where the Nn’s are the eigenvalues of the kernel

G(Er?)

oo 21
Mo (r,p) = G(Ep®) 12 1!({-2 ! (A.11)

S
0

and

a s A S S g

/’3; G(Er?) unp(r)dr , (A.12)

the un(r) being the (normalized) eigenfunctions of Mo

Thus (by (4.11)) ?J

A _ _ - - s Do £
ﬁig,ﬁ (1og DN> = 200 = p log(2+€m)+ q log(2+EM)- 2 néi = fn . ’
ﬁ
(Ae13)

This is as explicit a formula as one can get but whether it
can be usefully discussed remains to be seen.

We conclude by showing how (A.10) can be extended to

k=_2.

We write the infinite sum in (A.10) in the form

o [M']r K 21T (<) ()7

) ~EY ot et M (K)) =;(‘§)m nZ, I
o0 k) kz
3 5[ ]
+;z§—)' [

2 1 [ [ 2 (r) M (r,p) fx(p)ardp +
2 5 o




—-—'7—_

20.

(k) )
g B B Bl ]

! It is easy to convince oneself that as k —> =2 only the first
’ of the twe terms above survives (i.e. does not approach 0).
In fact, only the first term of Mk yields 2 non-vanishing

contribution and we have as k —> =2

N (-2) = p(2+€m) + a(24€H)

i © 00
| H
+ L 1im. —— [ [ fi (r) M (v, p) fi (p)drdp = 2 + E(m) + ¢
Ny (=2 k
k--Z 1"(—-2- : i
0 0 i
> 2 -2 |
( + 77i227 1im 2k 2 = {:[ pEH 72 g(gr®)ar ! &
o B
s 2+ &n)) - xT
1] - 1 -2 ’
| where §

{m) = pm + gM

' is the average masSSe

We have thus obtained a quadratic equation for %1(-2)

and

n(-2) = 2xEm) * 4§2+§<m>>2-“ : (.14)

Let us recall that we have conjectured that

<<;-“D-\?>K> ~ (k) (4.15)




21,

holds for all positive Xk . It now appears that the conjecture
is verified even for k = -2 ! For in this case the direct
calculation of (DN) shows that it is equal to the determinant
(2.1) with all masses replaced by the average mass {(m) and

this elementary determinant is asymptotically
N
N (-2)

with 2N (-2) given by (2.14).
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