LIPSCHITZ LECTURE 4 ACCOMPANYING EXERCISES

IVAN CORWIN

ABSTRACT. Feel free to come by office hours Wednesday and Thursday 3 - 5 p.m. in room 3-040.

(1) Prove that
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(2) Prove that k,! — k! as ¢ — 1.
(3) Hahn (1949) introduced two g-deformed exponential functions
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(Recall (a;¢)oo = [[;50(1 — q¢‘a)) Prove that for any fixed x, as ¢ — 1, eq(z), E,(z) — €.
(4) The g-Laplace transform is define for any function f € ¢*(Z>q) as
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where z € C\ {¢~ M }rr>0. Prove the following inversion formula:
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where (), is any positively oriented complex contour which encircles only the poles z =
¢ M for 0 < M < n. (Hint: Start by computing the residues of the integrand above at
these pole in terms of the values of f(n).)

(5) Prove the duality statement between -TASEP and q-TAZRP. Recall that
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Then prove the identity
Lq_TASEPH(f; Zj) — Lq_TAZRPH(f; Zj)

where on the left the operator acts on & and on the right it acts on .



