Integrability in the Kardar-Parisi-Zhang universality class

Ivan Corwin

(Clay Mathematics Institute, Massachusetts Institute of Technology and Microsoft Research)

An "integrable probabilistic system" has two properties:
Exact and concise formulas for expectations of a rich class of interesting observables
Scaling limits of systems, observables and formulas provide exact descriptions of large universality classes

We will focus on systems related to KPZ universality class.

The primary source of exact solvability here comes from representation theory and integrable systems.

Plan for the lectures:

- Quantum many body system approach
 q-TASEP (-> semi-discrete SHE -> SHE)
 ASEP
- Symmetric function theory approach
 Macdonald processes
 (Briefly) Geometric RSK correspondence, Gibbs properties

$$\underline{q-TASEP}: \longleftrightarrow \underbrace{\chi_{g(t)}}_{X_{g(t)}} \underbrace{\chi_{g$$

Generator acts on
$$f: X^N \rightarrow \mathbb{R}$$
 as

$$(\lfloor 9^{-TASEP} f)(\vec{x}) = \sum_{i=1}^{N} Q_i(1 - q^{X_{i-1} - X_i^{-1}})(f(\vec{x}_i^+) - f(\vec{x}))$$

Natural initial condition is <u>step</u> where $X_i(0) = -i$, $i \ge 1$ (When q=0, we recover the usual TASEP)

$$\begin{array}{c} q-TAZRP: \\ y_i \\ N \\ N-1 \\ N-$$

Generator acts on
$$h: Y \rightarrow \mathbb{R}$$
 as

$$(\lfloor q^{-TAZRP} h) (\vec{y}) = \sum_{i=1}^{N} \alpha_i (|-q^{Y_i}) (h(\vec{y}^{i:i-i}) - h(\vec{y}))$$

[Sasamoto-Wadati '98] stochastic representation of q-Bosons [Balazs-Komjathy-Seppalainen '08] stationary 1/3 exponent <u>Duality</u>: Suppose $X(t) \in X$ and $y(t) \in Y$ independent Markov processes and $H: X * Y \rightarrow \mathbb{R}$. Then X(t) and y(t) are dual with respect to H if for all x, y, and t

$$\mathbb{E}^{\mathsf{x}}[\mathsf{H}(\mathsf{x}(t),\mathsf{y})] = \mathbb{E}^{\mathsf{y}}[\mathsf{H}(\mathsf{x},\mathsf{y}(t))].$$

• Duality leads to hidden evolution equations for expectations of observables corresponding to the duality function.

<u>Theorem [Borodin-C-Sasamoto '12]</u>: q-TASEP $X(t) \in X^{n}$ and q-TAZRP $\overline{Y}(t) \in Y^{n}$ are dual with respect to

$$[H(\vec{X}, \vec{Y})] = \prod_{i=0}^{N} q^{(X_i+i)Y_i}$$
(convention that if $Y_0 > 0$, $H \equiv 0$)

Proof: Suffices to show that

$$\begin{bmatrix}
q^{-TASED} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix} = \begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZRP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\vdots \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}) \\
\end{bmatrix}$$

$$\begin{bmatrix}
q^{-TAZP} \\
H(\vec{x}, \vec{y}$$

Purpose of duality (for us):
If
$$\vec{y} = (0, 0, ..., 0, K)$$
 then
 $h(t; \vec{y}) \coloneqq \left[\mathbb{E}^{\vec{x}} \left[H(\vec{x}(t), y) \right] = \mathbb{E}^{\vec{x}} \left[q^{K(X_{n}(t)+N)} \right]$

Duality implies that for \vec{X} fixed, $h(t; \vec{y})$ solves the <u>True evolution equation</u>:

$$\int \frac{d}{dt} h(t; \vec{y}) = L^{g-TAZRP} h(t; \vec{y})$$
$$h(0; \vec{y}) = H(\vec{x}, \vec{y}) \left[= h_0(\vec{y}) \right]$$

True evolution equation splits according to number of particles

$$W_{\geq 0}^{k} := \left\{ \vec{\eta} = (\eta_{1}, ..., \eta_{k}) \in \mathbb{Z}_{\geq 0}^{k} : \eta_{1} \geq \eta_{2} \geq ... \geq \eta_{k} \geq 0 \right\}$$

Encode $\vec{y} \in Y_{\kappa}^{N}$ by an ordered list of particle locations

Example: N = 2, K = 4

$$\vec{y} = (0, 3, 1) \iff \vec{n} = (1, 1, 1, a)$$

- We can encode true evolution equation in the \vec{n} coordinates by writing $G(t; \vec{n}) := h(t; \vec{y}(\vec{n}))$, $g_{o}(\vec{n}) := h_{o}(\vec{y}(0))$
- k=1: single particle, so $\vec{n}=(n)$, then

$$\begin{cases} \frac{d}{dt} g(t;n) = a_n(1-g) \nabla g(t;n) \\ g(t;0) \equiv O \\ g(0;n) = g_0(n) \end{cases}$$
$$\int (\nabla f)(n) = f(n-1) - f(n) \end{bmatrix}$$

For step initial data
$$X_i + i = 0$$
 so $H(\vec{x}, \vec{y}) = 1$ and so too $g_0 = 1$
Claim: $\left[E^{step} \left[q^{X_n(t)+n} \right] = q(t;n) = \frac{-1}{2\pi i} \oint q_z(t;n) \frac{dz}{z} \right]$
where $q_z(t;n) = \prod_{m=1}^n \frac{a_m}{a_m^{-z}} e^{(q-1)tz}$

Proof: Check free equation, zero boundary condition, and initial data.

• k=2: two particles, so $\vec{n} = (n_1 \ge n_2)$ • If $n_1 > n_2$ $\frac{d}{dt} g(t; \vec{n}) = \sum_{i=1}^{2} a_{n_i}(1-q) \nabla_i g(t; \vec{n})$

Not constant coefficient, so unclear how to solve...

• k>2: there are different equations for each type of clustering (i.e., many body interactions)

Proposition: (Free evolution eqn with k-1 boundary conditions):
If
$$\mathcal{U}: \mathbb{R}_{20} \times \mathbb{Z}_{20}^{\times} \longrightarrow \mathbb{R}$$
 solves
• For all $\vec{n} \in \mathbb{Z}_{20}^{\times}$, $t \ge 0$,
Free evolution eqn $\frac{d}{dt} \mathcal{U}(t;\vec{n}) = \sum_{i=1}^{k} a_{ni} (1-q) \nabla_i \mathcal{U}(t;\vec{n})$
• For all $\vec{n} \in \mathbb{Z}_{20}^{\times}$ such that $n_i = n_{i+1}$
Boundary conditions $(\nabla_i - q \nabla_{in}) \mathcal{U}(t;\vec{n}) = 0$
• For all $\vec{n} \in \mathbb{Z}_{20}^{\times}$ such that $n_k = 0$, $\mathcal{U}(t;\vec{n}) \equiv 0$
• For all $\vec{n} \in \mathbb{Z}_{20}^{\times}$ such that $n_k = 0$, $\mathcal{U}(t;\vec{n}) \equiv 0$
• For all $\vec{n} \in \mathbb{W}_{20}^{\times}$, $\mathcal{U}(0;\vec{n}) = q_0(\vec{n})$
Then, restricted to $\vec{n} \in \mathbb{W}_{20}^{\times}$, $q(t;\vec{n}) = \mathcal{U}(t;\vec{n})$.

Theorem: For step initial condition (i.e.,
$$q_0(\vec{n}) = 1$$
) we have
 $\mathcal{U}(t;\vec{n}) = \frac{(-1)^{k} q^{k(k-1)/2}}{(2\pi i)^{k}} \oint \int \int \int \frac{z_{A}-z_{B}}{1 \le A \le B \le k} \int \int \frac{z_{A}-z_{B}}{z_{A}-qz_{B}} \int \int \frac{z_{A}-z_{B}}{(2\pi i)^{k}} \int \frac{z_{A}-z_{B}}{(2\pi$

Proof: Only new aspect is boundary condition. Applied to integrand brings out factor of $\frac{2}{1} - \frac{1}{9} \frac{2}{1} + 1$. Contour symmetry and integrand asymmetry shows integral is zero.

Success in using moments to asymptotically study one-point distribution, though multi-point distributions remain open

True evolution equation also equivalent to a certain <u>q-deformed discrete delta Bose gas</u> $\frac{d}{dt}g(t;\vec{n}) = Hg(t;\vec{n})$

with Hamiltonian

$$\left| - \right| = \left(\left| -q \right| \right) \left[\sum_{j=1}^{k} \nabla_{j} + \left(\left| -q^{-j} \right| \right) \sum_{1 \le i < j \le k} \delta_{n_{i}=n_{j}} q^{j-i} \nabla_{j} \right]$$

subject to Bosonic symmetry and zero boundary condition

Integrability (equiv. to free eqn with k-1 B.C.s) not obvious for this system (Note: not all delta Bose gases are integrable)

(Parallel) Geometric discrete time q-TASEP [Borodin-C '13]:

$$P(jump = j) = P_{m,\alpha}(j)$$

$$(j) = \alpha^{j}(\alpha : q)_{m-j} \frac{(q:q)_{m}}{(q:q)_{m-j}(q:q)_{j}} 1_{o \le j \le m} (a:q)_{n-j} = \prod_{j=0}^{n-1} (1-aq^{j})$$

At q=0 -> parallel geometric TASEP with blocking [Warren-Windridge '09] (Sequential) Bernoulli discrete time q-TASEP [Borodin-C '13]:

At q=0 -> sequential Bernoulli TASEP [Borodin-Ferrari '08]

q-TASEP joint moments satisfy various many body systems

<u>Theorem [Borodin-C'13]</u>: For $n_1 \ge n_2 \ge \cdots \ge n_k > 0$

$$F(z) = \begin{cases} e^{tz}, \text{ Poissonian Continuous } q \text{-TASEP} \\ \left(\frac{1}{(x z; q)\infty}\right)^{t}, \text{ Gernoulli discrete } q \text{-TASEP} \\ \left(1 + \beta z\right)^{t}, \text{ Bernoulli discrete } q \text{-TASEP} \end{cases}$$

Must account for residues from poles crossed in deformation

<u>Proposition [Borodin-C '11]</u>: For "nice" f(x)

where

$$E_{j}(z_{1},...,z_{k}) = \prod_{j=1}^{k} \frac{f(qz_{j})}{f(z_{j})} \cdot \sum_{\sigma \in S_{k}} \prod_{k \ge B > A \ge j} \frac{z_{\sigma(A)} - qz_{\sigma(B)}}{z_{\sigma(A)} - z_{\sigma(B)}} \prod_{j=1}^{k} (1 - z_{\sigma(J)})^{n_{j}}$$

<u>Conclusion</u>: for step initial condition q-TASEP

"Mellin Barnes" representation suitable for asymptotics

$$K_{s}(\omega, \omega') = \frac{1}{a\pi i} \int \frac{\pi}{\sin(\pi s)} \left[-(1-q)s \right]^{s} \frac{f(q^{s}\omega) (q^{s}\omega;q)_{\infty}^{N}}{f(\omega) (\omega;q)_{\infty}^{N}} \cdot \frac{1}{wq^{s}-w} ds$$

Moments of $q^{X_n(t)+n} \leq 1$, so they characterize the distribution.

q-deformed exponential [Hahn '49]:

$$\begin{array}{l} \left(\begin{array}{c} e_{q}(x) := \underbrace{1}_{\left(\left(1 - q \right) \times j q \right)_{\infty}} = \begin{array}{c} & \sum_{k=0}^{\infty} \frac{x^{k}}{k_{q}!} \\ & k=0 \end{array} \begin{array}{c} \left(\begin{array}{c} e_{q}(x) & \frac{q^{n}}{k_{q}!} \\ & k=0 \end{array} \right) \end{array} \end{array}$$

<u>Theorem [Borodin-C'11+]</u>:

$$\mathbb{E}^{\text{step}}\left[e_{q}(s_{q}^{X_{n}(t)+n})\right] = \sum_{k=0}^{\infty} \mathbb{E}^{step}\left[q^{k(X_{n}(t)+n)}\right] \frac{g^{k}}{K_{q}!} = \operatorname{de}^{+}\left(I + K_{g}\right)_{L^{2}(+\infty)}$$

The above can be seen as a rigorous q-deformed discrete version of the polymer replica trick.

q-deformed Laplace transform has simple inversion formula.

A ---

For
$$f \in l_1(N)$$
 and $Z \in \mathbb{C}/q^{-N}$ define $\widehat{f}^q(Z) := \sum_{n=0}^{\infty} \frac{\widehat{f}(n)}{(Zq^n;q)\infty}$

Proposition [Borodin-C '11, Bangerezako '09]:

$$f(n) = -q^n \frac{1}{2\pi i} \int (q^{n+1} z_{i} q)_{\infty} \hat{f}^{g}(z) dz$$

$$= -q^n \frac{1}{2\pi i} \int (q^{n+1} z_{i} q)_{\infty} \hat{f}^{g}(z) dz$$

<u>Theorem [Borodin C '11+]</u>:

"Cauchy" type formula simpler than "Mellin Barnes"; but apparently harder for asymptotic analysis.

$$\begin{array}{l} q-\text{TASEP} \\ \text{satisfies:} \end{array} \left\{ \begin{array}{l} Q q^{X_n(t)+n} \equiv (1-q) \nabla Q^{X_n(t)+n} dt + q^{X_n(t)+n} dM_n(t) \\ q^{X_n(0)+n} \equiv 1 \text{ (step)}, \quad q^{X_o(t)+0} \equiv 0 \text{ (} X_o = \infty \text{)} \end{array} \right\}$$

<u>Theorem [Borodin-C'11]</u>: For q-TASEP with step init. cond. scale $q = e^{-\varepsilon}$, $t = \varepsilon^2 \gamma$, $X_n(t) = \varepsilon^2 \gamma - (n-1)\varepsilon' \log \varepsilon' - \varepsilon' F_{\varepsilon}(\gamma, n)$ and call $Z_{\varepsilon}(T,n) = \exp\left\{-\frac{3T}{2} + F_{\varepsilon}(T,n)\right\}$. Then as $\varepsilon > 0$, $Z_{\varepsilon}(\cdot, \cdot) \Longrightarrow Z(\cdot, \cdot)$ where Z solves the <u>semi-discrete SHE</u>: $\begin{cases} dZ(T, n) = \nabla Z(T, n) dT + Z(T, n) dB_n(T) \\ Z(0, n) = \prod_{n=0}^{\infty} Z(T, n) dT + Z(T, n) dB_n(T) \\ Z(0, n) = \prod_{n=0}^{\infty} Z(T, n) = 0 \end{cases}$

This leads to a rigorous derivation of $\mathbb{E}[e^{-S Z(\mathcal{I}, n)}] = \operatorname{clet}(I + \widetilde{K}_S)$ and proof that logarithm of semi-discrete SHE has GUE Tracy-widom scaling limit under \mathcal{T}^{V_3} scaling (Ferrari's talk)

Under weak noise scaling [Alberts-Khanin-Quastel '12] the semi-discrete SHE converges weakly to the continuum SHE [Moreno Flores-Remenik-Quastel '13]:

$$\int_{t} \mathcal{Z}(t,x) = \frac{1}{2} \partial_{x}^{2} \mathcal{Z}(t,x) + \mathcal{Z}(t,x) \mathcal{J}(t,x), \qquad \mathcal{Z}(0,x) = \delta_{x=0}$$
(space time white noise)

Thus a second proof of SHE Laplace transform Fredholm det. [Sasamoto Spohn '10, Amir-C-Quastel '10, Calabrese-Le Doussal-Rosso '10, Dotsenko '10] Feynman-Kac representation leads to semi-discrete polymer [O'Connell-Yor 'O1] and continuum random polymer. Replica method [Molchanov '86, Kardar '87] shows that joint moments $\mathbb{E}[\prod_{j=1}^{k} Z(T,n_j)], \mathbb{E}[\prod_{j=1}^{k} Z(t,x_i)]$ satisfy delta Bose gases $H = \sum_{j=1}^{k} \nabla_j + \sum_{\substack{l \in i \leq j \leq k}} I_{n_i=n_j}, H = \frac{1}{2} \sum_{j=1}^{k} \partial_{x_j}^2 + \sum_{\substack{l \leq i \leq j \leq k}} \delta_{x_i=x_j}$

Both can we written as free evolution eqn. with k-1 B.C.'s and solved by limits of the q-TASEP nested contour formulas. However, these moments grow like e^{ck^2} , e^{ck^3} and hence do not characterize the distribution of Ξ (replica trick). General coupling const. version (c<0 repulsive, c>0 attractive)

$$\begin{cases} \partial_{t} \mathcal{U}(t; \vec{x}) = \sum_{j=1}^{k} \partial_{x_{j}}^{2} \mathcal{U}(t; \vec{x}), \\ (\partial_{x_{i}} - \partial_{x_{i+1}} - C) \mathcal{U}(t; \vec{x}) |_{x_{i} \neq x_{i+1}} = 0, \quad \mathcal{U}(0; \vec{x}) = \delta \vec{x} = 0 \end{cases}$$

is solved (in $X_1 < X_2 < \cdots < X_K$) by the nested contour integral formula

$$\mathcal{U}(t;\vec{x}) = \frac{1}{(2\pi\tau)^{k}} \int \int \int T \frac{Z_{A} - Z_{B}}{\int I \leq A < B \leq k} \frac{Z_{A} - Z_{B}}{Z_{A} - Z_{B} - C} \int \int (-X_{j} Z_{j} + Z_{j} Z_{j}^{2}) dZ_{j}$$

where Z_j is integrated over $\alpha_j + iR$, with $\alpha_1 > \alpha_2 + c > \alpha_3 + ac > \cdots$

See [Heckman-Opdam '97] Plancherel theorem for delta Bose gas; ideas trace back to [Harish Chandra '58] (Borodin's talk) SHE in a half space corresponds to symmetric noise $\xi(t,x) = \xi(t,-x)$

Joint moments satisfy delta Bose gas on $X_1 < X_2 < \dots < X_k < O$ + extra boundary condition $\frac{d}{dx_k} U(t; \vec{X}) = O$. (Le Doussal's talk)

<u>Theorem [Borodin-C '13]</u>: Solved by nested contour integral

$$\mathcal{U}(t;\overline{\chi}) = \frac{1}{(2\pi i)^{\kappa}} \int \cdots \int_{\substack{I \leq A < B \leq K}} \frac{Z_{A} - Z_{B}}{Z_{A} - Z_{B} - 1} \cdot \frac{Z_{A} + Z_{B}}{Z_{A} - Z_{B} - 1} \prod_{j=1}^{k} \mathcal{O}_{j} X_{j} Z_{j} + \frac{1}{2} Z_{j}^{2} dZ_{j}^{2}$$

where Z_j is integrated over $\alpha_j + iR$, with $\alpha_1 > \alpha_2 + 1 > \alpha_3 + 2 > \cdots$, $\alpha_k = 0$

(Non-rigorously) yields Fredholm Pfaffian formula for Laplace transform of symmetric SHE (cf. [Le Doussal-Gueudre '12])

Simons Symposium Page 32

Summary:

- Duality for q-TASEP leads to unexpected many body systems for expectations of certain observables
- Free evolution equation with k-1 boundary condition form can be solved via a "nested contour integral ansatz"
- Moment formulas combine into generating function (q-Laplace transform) as Fredholm determinants
- Mellin Barnes Fredholm determinant good for asymptotics
- Degenerates to semi-discrete and continuum replica trick
- Many body system approach is general, but not structural

Two questions:

- What is the structural origin of q-TASEP, the special $q^{X_n(t)+n}$ observables and the nested contour integral formulas?
- Are there any parallel systems of q-TASEP which are solvable via the many body system approach?

These questions will draw us to the study of

- Macdonald processes (+ directed polymer / geometric RSK)
- ASEP

Many body systems approach reveals parallel formulas. Is there a higher structure which accounts for this?

Simons Symposium Page 35