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An "integrable probabilistic system" has two properties:

o Exact and concise formulas for expectations of a rich class
of interesting observables

o Scaling limits of systems, observables and formulas provide

exact descriptions of large universality classes

We will focus on systems related to KPZ universality class.

The primary source of exact solvability here comes from

representation theory and integrable systems.



Plan for the lectures:
e Quantum many body system approach
o0 g-TASEP (-> semi-discrete SHE -> SHE)
o ASEP
» Symmetric function theory approach
o Macdonald processes
o (Briefly) Geometric RSK correspondence, Gibbs properties
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Natural initial condition is step where X;(0)= -} N

(When g=0, we recover the usual TASEP)
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[Sasamoto-Wadati 'ag] stochastic representation of q-Bosons
[Balazs-Komjathy-Seppalainen '02] stationary 1/3 exponent
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Duality: Suppose X()eX and V(1) Y independent Markov
processes and H: XY —=R. Then X&) and YO are dual

with respect to H if for all x, y, and t

[HEa )] =E [HOye)]

—

* Duality leads to hidden evolution equations for expectations
of observables corresponding to the duality function.
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Theorem [Borodin-C-Sasamoto '12]: g-TASEP X e X"
and q-TAZRP Y(Jr) e Y" are dual with respect to

- Al O(;‘H) ¢
HEy) = 14

(convention that if yo >0, H = 0)

Proof: Suffices to show that ,
A L , TA

AY

N \\ X+ /] N "
I PR S

*
Lt




Purpose of duality (for us):
IF ->_/> = (O,O)'n, 0 K) tl/\eV\

ht9)= E[HEoyn) = £ %k(ww]

Duality implies that for X fixed, h@:y) solves the

True evolution equation:
\ N §-TAERY o
I ht:y) = L ht-7)
h(o:7)= HEY) (: \r\()(y’)}
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True evolution equation splits according to number of particles

K = k
\/\/ZO — < n - (V\U“" nk) el}.o : nl ?—ng_a Tt anz O§

Encode 7€\ by an ordered list of particle locations

\7:3 _\y: > rl -
y(h)< N

Example: N= Q , k=4

7:(0,3}0 < > ﬁ):('/,) y 2) |:(



We can encode true evolution equation in the 7N coordinates

by writing CJH:J n) = h(t; V(ﬁ)) y 80(;’\3):: he (¥00)
e k=1: single particle, so ﬁ:(n) , then

/d %(Jc ) =0 ([ - 7) V%(t n)

4 (d(t 0 = O

Z %(OJY\): %o(r\)

[(\7 D)= Pln-1) - fe) ]




For step initial data X;+1=0 so H(Xy)=1 and so too § =1

Claim: (\ESJ@P[ CDX“&)M}t ?j(tm) = c;?:i § ?%(Jcmﬁ %fé

" Dt
where (d L(tin) = ﬂ am (LJ ‘

N

Proof: Check free equation, zero boundary condition, and

initial data.




e« k=2: two particles, so N =( N 2n,)
O lf h| > h_,\ a&s as \/ on N; Coodingd

d
Qgit:A) = 5 O (1- cpv )

O IF N, = Y\l d
AmY) = PR )'_>
‘ft%(tﬂ\) &n&(‘ Cb) vg 86(: ﬂ)
Not constant coefficient, so unclear how to solve...

e k>2: there are different equations for each type of

clustering (i.e., many body interactions)



Proposition: (Free evolution egn with k-1 boundary conditions):
If W (Rzoy Zg:: 7 R solves

-Fora((ﬁGZz:  t:0

a 3 A
Free evoludion e,an d-t \A(‘LR) :EZ:’ &h; (‘-Cﬁ) vi VHLH)

e For all F\ GZ:, such that N;=nN¢,
Romiary onbitions (Vi = gV ) WER) = O

e For all N eZs such that Ne=0 , WU(t:R) =0
e For all N e\wso, W(OSR) = ao (R)

Then, restricted to 0 € \WAS, 8&; ~) = ult:n) .

3
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- Theorem: For step initial condition (i.e., Cd o (R) = l) we have
K k(k /2

Utn) = (C cA s U%z(f V\l)ﬁ

(&TT BN '<A<B<k tfts

Proof: Only new aspect is boundary condition. Applied to
integrand brings out factor of Zi =G 2w . Contour symmetry

and integrand asymmetry shows integral is zero.
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lmplies joint moment formulas. For example, if all a, =
k k-4 po p K (%-,)4(3.

[:SMP[ Cﬁk(ﬁ&yﬂ J _ O % o---0 [ z“'ZBT\Q
_ [ = 2]

(s 3 Vs TR (-3 5

Success in using moments to asymptotically study one-point
distribution, though multi-point distributions remain open



True evolution equation also equivalent to a certain

q-deformed discrete delta Bose gas
d a/1 . B) — .
OT;C‘a(%Jﬂ) = Hﬁ(%rﬂ
with Hamiltonian

H‘(“‘MZV + (- 3')% O, =» j l

subject to Bosonic symmetry and zero boundary condition

Integrability (equiv. to free eqn with k-1 B.C.s) not obvious
for this system (Note: not all delta Bose gases are integrable)



(Parallel) Geometric discrete time q-TASEP [Borodin-C '13]:

P(jwmp :J) = pm)u (\J>

«——@—— .@‘ ——> Cﬁ\ e(01) ) xe(0,1)
. (iim/\( _ TT(l ag!)
p"\&\ \‘ = X (O< Cb) (C‘ ‘L) L(5\}9«\ ) J

At g=0 -> parallel geometric TASEP with blocking
[Warren-Windridge '09]



(Sequential) Bernoulli discrete time q-TASEP [Borodin-C '13]:

Prb 2}
1) < @ —@— ‘q | l-‘/g = 66(0");/6€(O’°°>
,)jprob (| _%gap) (%5
< \ ‘ \ . | ," : q
& qp”’b %3
< \ ‘ A ' . — \ ‘ : 5
3) ..

At g=0 -> sequential Bernoulli TASEP [Borodin-Ferrari 'Og]



q-TASEP joint moments satisty various many body systems

Theorem [Borodin-C '131: For N, 2n,>--3n, >0

| kk-1/2. k.

st (& X, (Den: ) (~M §§ 20 T L {43 Jz
I~ J[= 8 U 0 . _
[ 1__];=Kncb | (&m) 'A<ack"‘7ze (, ) ﬁ(zd ¢

L

\ i

tz
e PO\SSDY\\OM COV)"'tv\uouS 7 - TASEP

{I(%B = ((Nz (b) \ beometric discrele cl'j TASEP
(1 \-)“5%) Bermoulli ducrete TTASED
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Nested contours -> fixed contours

7[7\
\
&)

Must account for residues from poles crossed in deformation
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Proposition [Borodin-C '117: For "nice" f(x)

K kik-1/2 2 k P( (
-1 CX §§ - tA R ﬂ ri¢z) jal S
(&Tﬂ)k A<(B¢k’q (, 2 Vi 1(1[2) %\/ \ @
(‘ _ ' N P | &(}\)
A-K [ " .-‘,wm, ﬁﬂm Wwﬁdw
A= 172 Y
where

- . %.J-—- T Mg 455 ] %“"’ ffo0 7

\C(%\]) teSk KeB>Ax| oy = 2eepy g (' ZN\PB\J
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For all

t(?'» %()_.fﬁ(%)_’__ >

= @) ) FESy K2B24z)

=N, Bz simplifies to

‘ZO‘(A)Q % 26‘(8)




Mowment generating function -> Fredholm determinant
\~<

G(D)= 2 ET ] ﬂ« = de (IJ’KQB&@)

kK =0

N ST Q(%w)(u))a |
kg AW = %:[(' ?S] flw) w%%j i

"Mellin Barnes" representation suitable for asymptotics

S N
K w,wh= ] (I e Hg D g | s

AT | Sin(TTS)

LR



Xa(t)*N

Moments of % <1, so they characterize the distribution.

q-deformed exponential [Haln '449]:
N |
ch(x 1 Z K‘j" (e%(xﬁ AN e">

Theorem [Borodin-C ’11+l°

AS*EPE e ('3 X (+)+nJ Z‘Eﬂw[ k(xn(ﬂm) (b C‘Q/ + (l' 4 <g e

The above can be seen as a rigorous q-deformed discrete

version of the polymer replica trick.



q-deformed Laplace transform has simple inversion formula.

For fef (N) and 2e€ C/g"“ define ﬁ(%) ::Z (i(;n)‘.p
N=o %

Proposition [Borodin-C '11, Bangerezako '09]:

@(m 66 N f(%"“zzg)ao (33(%) dz

N




We could have chosen the large contours: / (\>

Theorem [Borodin C '11+]:

—Skep xmn _

\’<<WW —’—‘—% H%k‘)) |

W) G- W

"Cauchy" type formula simpler than "Mellin Barnes"; but
apparently harder for asymptotic analysis.



q-TASEP d %Xn({)¥ﬂ — G _ Cp v %Xn(ﬂ*ndt N %Xn(’c)*n d l\(lﬂ (t>

satis H@S: /\/\arﬁné&‘e

Xo®+ 0

%Xnko)*nz___ 1 (S@)/ % =0 (x-o)

Theorem [Borodin-C '11]: For g-TASEP with step init. cond.

scale C6= et t= %1, Xab= €2f—-(ne0£"loﬂén' - ()

and call 2&(“C)n)= @XP {L"% + E:(t,r\)g . Then as £ O,
Z0) = Z2(.,.) where 2 solves the semi-discrete SHE:

d2(T,n) =V 2(t,n0dT +2cc,ndB(T)
<L ing, Bms
200,n)=1nazs . 2(T,00=0




FLe” )= det(1+K)
and proof that logarithm of semi-discrete SHE has GUE
Tracy-widom scaling limit under T3 scaling (Ferrari's talk)

—

This leads to a rigorous derivation of

Under weak noise scaling [Alberts-Khanin-Quastel '12] the
semi-discrete SHE converges weakly to the continuum SHE
[Moreno Flores-Remenik-Quastel '13]:

Qt T(t,x) = j&f 2(E,X) + 2E0EHE X 2 (0, X) = 0x=0

Spate F1vme white hoige)

Thus a second proof of SHE Laplace transform Fredholm det.

[Sasamoto Spohn ‘10, Amir-C-Quastel '10, Calabrese-Le Doussal-Rosso '10, Dotsenko '10]
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Feynman-Kac representation leads to semi-discrete polymer

[O'Connell-Yor 'O1] and continuum random polymer.

Replica method [Molchanov '8, Kardar '8 7] shows that joint
moments E[ﬁzn 3} (E[TT (1, X )] satisfy delta Bose gases

H:ZV, +>—, I“'V‘L‘—'\J I"’ Eax ng,x

J= lsi,<J's\< J < ”‘J‘k

Both can we written as free evolution eqn. with k-1 B.C.'s
and solved by limits of the g-TASEP nested contour formulas.

, 2 3
However, these moments grow like €°k %" and hence

do not characterize the dlstwbutlom of 2 (re/ohca trick).
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General coupling const. version (c<O repulsive, ¢>O attractive)

I W(tiX) = ng U5,
(x, ~Ox,.- c)\A(t x)‘ =0 ue:D=5i-o

>< /‘XL )
is solved (in X.<X << ¥X) by the nested contour integral formula
{52
N 1 S S ZA 2‘3 K X ——c’ += Z
WX = grge ] 1T 3 24-2-C TT e dz

1< A<R<K

where 2; is integrated over o+, with &\ >ea+C>064al> -

See [Heckman-Opdam 'a7] Plancherel theorem for delta Bose
gas; ideas trace back to [Harish Chandra '52] (Borodin's talk)
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SHE in a half space corresponds to symmetric noise $(t,x)=3(t%)

Joint moments satisfy delta Bose gas on X, <X, < <X 20
+ extra boundary condition f Uit X) =0. (Le Doussal's talk)

Theorem [Borodin-C '13]: Solved by nested contour integral

t 52
1 2oty | Zar a X2tz g
\A(t X) (1171) J\ | \r l Za-2 -l e 2g -l H 6 dzJ

| ¢AB ¢k

where Z; is integrated over o<d-+LR, WIth o > og+1>0G42 > -, o4=0

(Non-rigorously) yields Fredholm Pfaffian formula for Laplace
transform of symmetric SHE (cf. [Le Doussal-Gueudre '1.2.])
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Discrete tnme geometric /
/ Bernoulli g-TASEP
lesoman q- TAS@ 1

Log-gamm
( &l discrete SH

/
Semi-discrete @

/N :
\/ @tt’nuum@

@SET/ LPP) | /‘

\\ \/ \//

med point (GUE Tracy-Widom d:’st@
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Summary:

 Duality for g-TASEP leads to unexpected wmany body
systems for expectations of certain observables

* Free evolution equation with k-1 boundary condition form
can be solved via a "nested contour integral ansatz"

e Moment formulas combine into generating function (q-
Laplace transform) as Fredholm determinants

e Mellin Barnes Fredholm determinant good for asymptotics

e Degenerates to semi-discrete and continuum replica trick

» Many body system approach is general, but not structural
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Two questions:

e What is the structural origin of g-TASEP, the special gx‘“(ﬂm
observables and the nested contour integral formulas?

e Are there any parallel systems of g-TASEP which are

solvable via the many body system approach?

These questions will diraw us to the study of
e Macdonald processes (+ directed polymer / geometric RSK)
« ASEP



Many body systems approach reveals parallel formulas.
s there a higher structure which accounts for this?

o

\ Macdonald processes)

ﬁm && Many body systems) j
bethe _ \
ansatz ASEP q @
\—
N\ o
Mnuum SHj
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