Integrable probability: Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class

Ivan Corwin

(Columbia University, Clay Mathematics Institute, Institute Henri Poincare)

Tueday talk 2b Page 1

<u>Defining the L-matrix</u>

<u>Goal</u>: Construct and analyze interacting particle systems related to integrable higher spin vertex models. In so doing, unite all integrable members of the KPZ universality class in one 4-parameter family.

<u>L-matrix</u>: Indexed by complex parameters q_{I}, α, I, J such that $L: V^{T} \otimes H^{J} \rightarrow V^{T} \otimes H^{J}$

For most of the talk, we will set $J=1, V=q^{-I}$ and write $L_{\alpha}^{(J)}$.

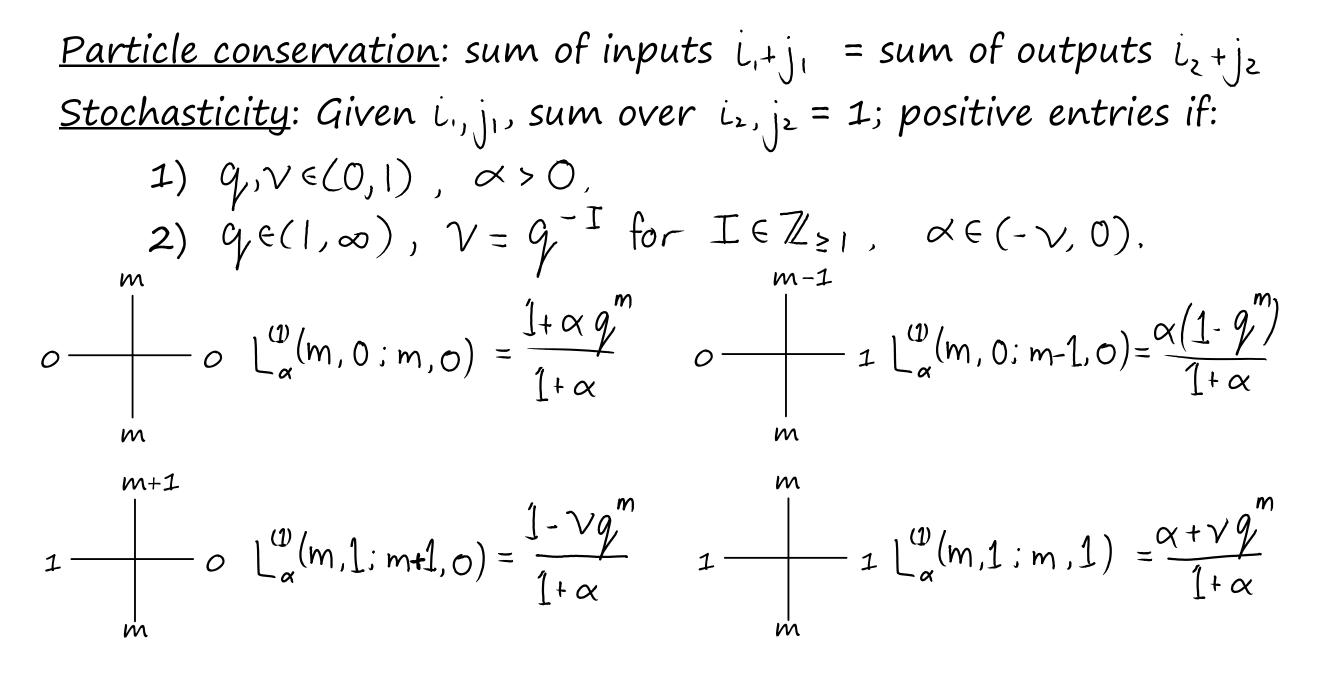
$$L-matrix weights$$

$$L-matrix weights$$

$$L-matrix elements: \left\lfloor (i_{1}, j_{1}; i_{2}, j_{2}) \text{ indexed} \right\}$$

$$\lim_{i_{1} \in \mathcal{N}^{T}} |i_{1} \in \mathcal{N}^{T} | |i_{2} \in \mathcal{N}^{T}$$

<u>L-matrix weights</u>



<u>Aside: Six vertex R-matrix</u>

Define
$$R(z) = \begin{pmatrix} z K q^{1/2} - z^{-1} K^{-1} q^{-1/2} & Z q^{1/2} e \\ z^{-1} q^{-1/2} f & Z K^{-1} q^{1/2} - z^{-1} K q^{-1/2} \end{pmatrix}$$

where \mathbf{e} , \mathbf{f} , \mathbf{k} generate C_q , related to $U_q(\widehat{sl2})$, via the relations: $\mathbf{K} \mathbf{e} = q \mathbf{e} \mathbf{K}$, $\mathbf{K} \mathbf{f} = q^{-1} \mathbf{f} \mathbf{K}$, $\mathbf{e} \mathbf{f} - \mathbf{f} \mathbf{e} = (q - q^{-1}) (\mathbf{K}^2 - \mathbf{K}^{-2})$. $V^{(\mathrm{T})} \cong \mathbb{C}^{\mathrm{I}^{+1}}$ is $\mathrm{I} + 1$ dim (spin $\mathrm{I}/2$) irreducible rep'n with action $\mathbf{K} V_i^{(\mathrm{T})} = q^{\frac{1}{2} - i} V_i^{(\mathrm{T})}$, $\mathbf{f} V_i^{(\mathrm{T})} = (q^{\mathrm{I}^{-1}} - q^{-\mathrm{I}^{+1}}) V_{i+1}^{(\mathrm{T})}$, $\mathbf{e} V_i^{(\mathrm{T})} = (q^{\mathrm{I}} - q^{-\mathrm{I}}) V_{i-1}^{(\mathrm{T})}$

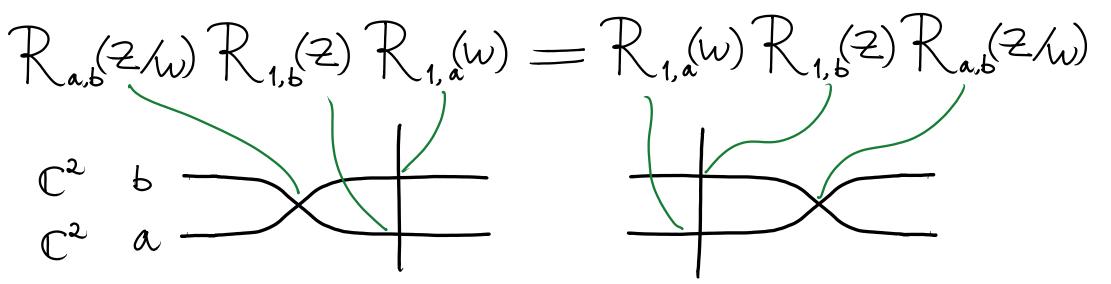
and basis $V = \operatorname{Span} \{V_{o}, V_{1}, \dots, V_{r}\}$. Identify $V_{i}^{(r)}$ as i up-spins / particles

<u>Aside: Six vertex R-matrix</u>

Output

With C_q acting on V, R(z) maps $\mathbb{C}^2 \otimes \bigvee$ to itself with matrix elements indexed by $\dot{l}_1, \dot{l}_2 \in V$, $\dot{j}_1, \dot{j}_2 \in \mathbb{C}^2$

The R-matrix satisfies the Yang-Baxter relation input



Algebraic Bethe ansatz diagonalizes associated transfer matrix.

Our L-matrix is a modification of R-matrix, so as to be stochastic.

Zero range process (stochastic transfer matrix)

 $\xrightarrow{1}{-3} \xrightarrow{-2}{-1} \xrightarrow{0}{1} \xrightarrow{2}{-3} \xrightarrow{3} B^{\alpha, q\alpha}(\vec{y}, \vec{y}') \text{ with state variables } \vec{y}.$

<u>Asymmetric exclusion process</u>

$$\begin{array}{c} \underline{AEP}: \ State \quad \breve{X} = (X_{1} > X_{2} > \cdots), \ X_{i} \in \mathbb{Z}, \ X_{i} \equiv +\infty, \ i \leq 0 \ (need \ V^{T} inf. \ dim) \\ 0 = \underbrace{h_{0}}_{h_{1}} \underbrace{h_{1}}_{h_{2}} \underbrace{h_{2}}_{h_{1}} \\ g_{0} = +\infty \\ g_{1} \end{array} \xrightarrow{h_{2}} \underbrace{Call \ T^{\alpha, \ q\alpha}(\breve{x}, \breve{x}')}_{X_{1}} \ transition \ probability \ / \\ matrix \ for \ the \ AEP. \end{array}$$

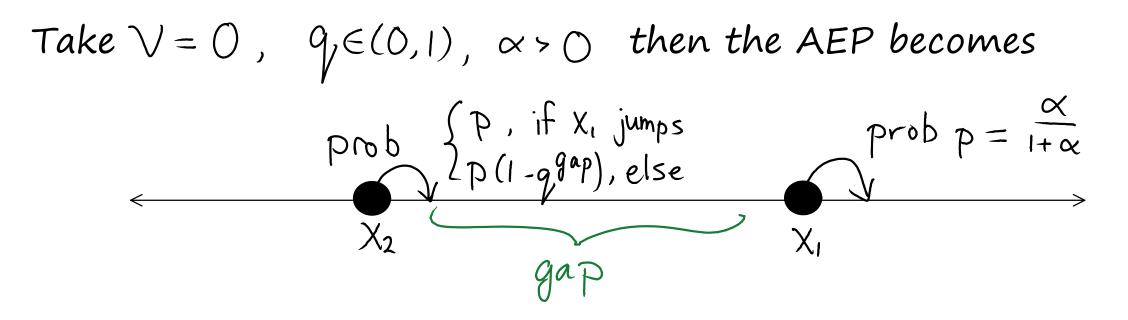
What do we do?

- **Diagonalize** transfer matrices (B's) via the q-Hahn Boson eigenfunctions on the line (uses completeness / Plancherel theory)
- Demonstrate Markov dualities between $B \leftrightarrow \widetilde{B}$ and $T \leftrightarrow \widetilde{B}$ which enables the computation of moments / distribution functions.
- Generalize to J>1 via probabilistic version of 'fusion'.

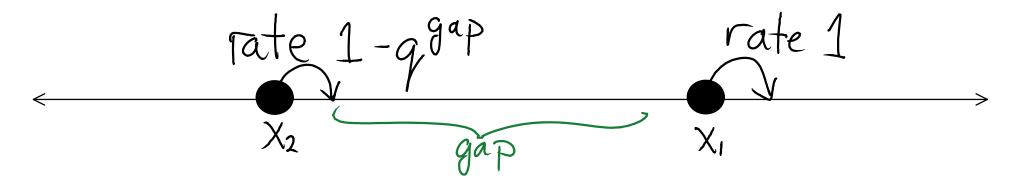
The resulting 4-parameter $q_{j,\alpha}$, V, J family of processes is on the top of the (known) **integrable KPZ class hierarchy** and we gain tools to study all of the models simultaneously.

But first, let's explore two special degenerations of the processes.

<u>Bernoulli q-TASEP</u>

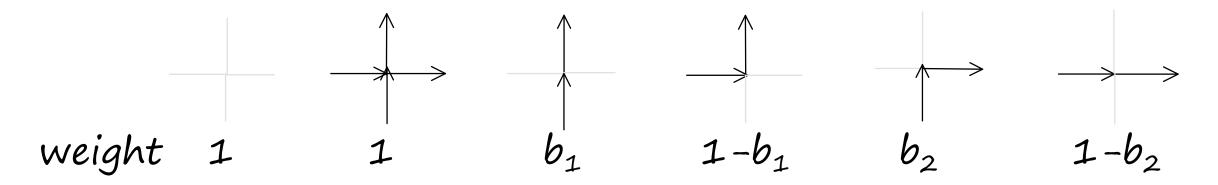


Taking $p \rightarrow 0$, jumps become seldom and speeding up by 1/p we recover the continuous time q-TASEP

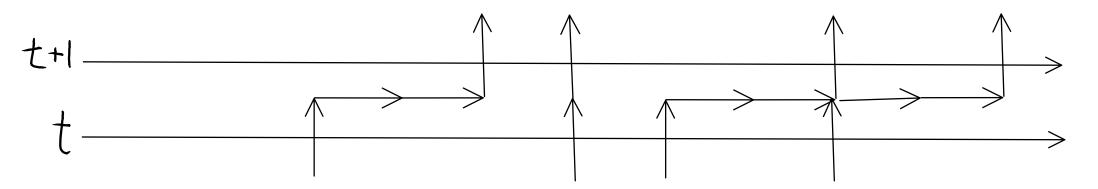


<u>Stochastic six vertex model</u>

Take $V = q^{-1} (I=1)$, $q \in (1, \infty)$, $\alpha \in (-v, 0)$. The six non-zero weights depend on $q_{1,1} \propto and can be reparameterized via <math>b_{1,1}, b_{2} \in (0,1)$ as



ZRP obeys exclusion rule [Gwa-Spohn '92], [Borodin-C-Gorin '14].



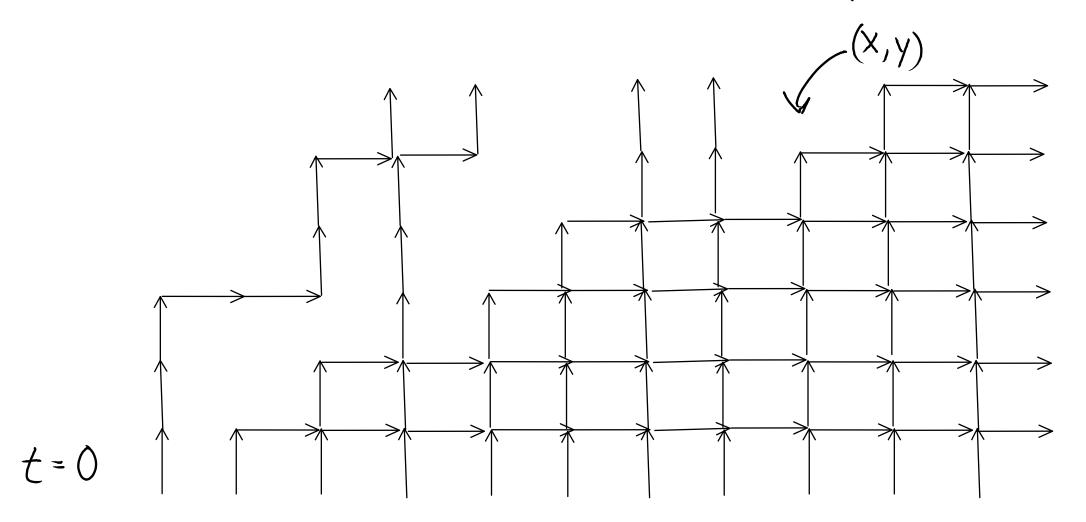
<u>ASEP limits</u>

The ratio $\frac{b_2}{b_1} = \gamma$. Fixing this and taking b_1 , $b_2 \lor 0$ ($\alpha \lor -\gamma$) Particles almost always follow a \uparrow trajectory. Subtracting this diagonal motion and speeding up time by 1/b we arrive at ASEP with left jump rate $\$ and right jump rate $\$ having ratio $\frac{1}{p} = \gamma$.

Thus we see already that we have **united q-TASEP and ASEP as processes** (earlier we saw their spectral theory united).

Note: q-TASEP has extra structure from Macdonald processes. No generalization of Macdonald processes is known when $\mathcal{V} \neq \dot{O}$.

Half domain wall boundary conditions (step initial data)



Start stochastic six-vertex with $g_i(0) = 1_{i\geq 0}$ and define a height function: $H(\chi, \chi) = #$ lines left of (χ, χ) .

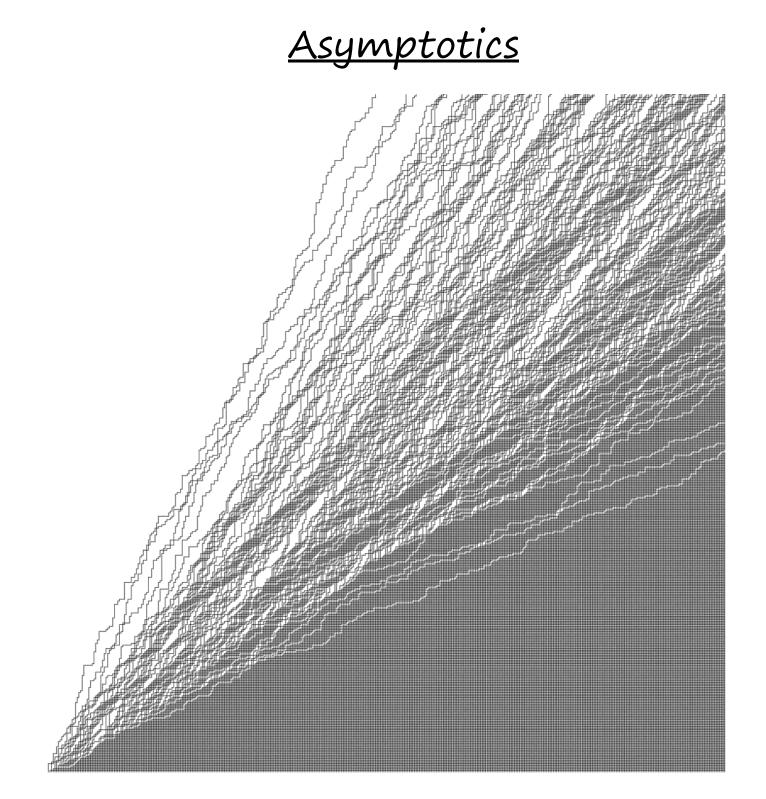
<u>Asymptotics</u>

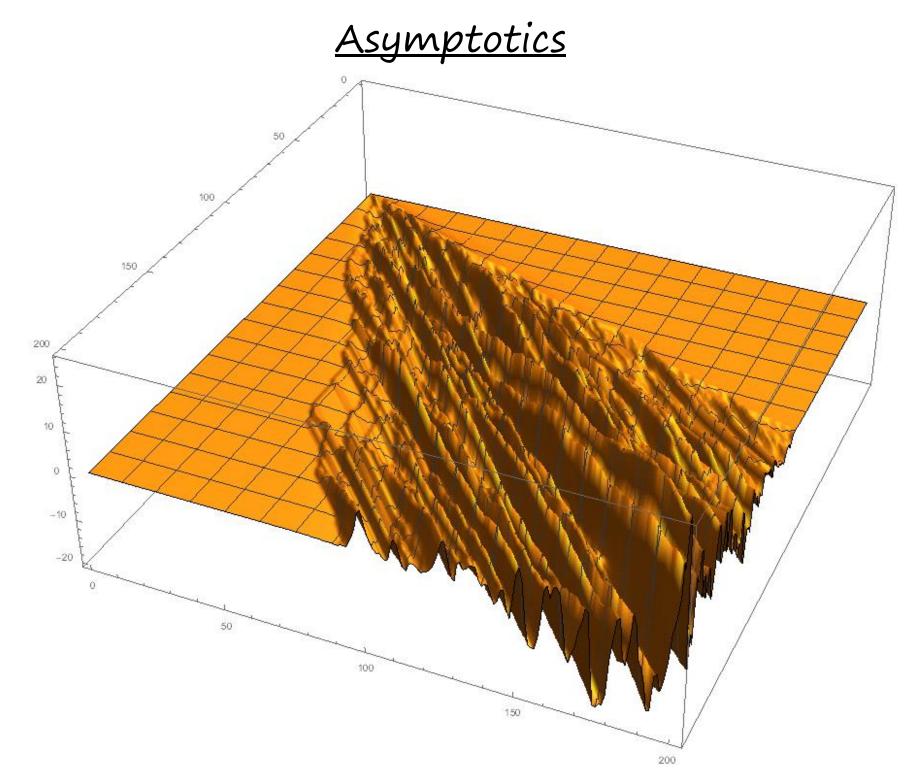
<u>Theorem [Borodin-C-Gorin '14]</u>: For $(0 < b_2 < b_1 < 1)$, $\lambda := \frac{1-b_1}{1-b_2}$ we have Law of large numbers:

$$\lim_{L \to \infty} \frac{H(Lx,Ly)}{L} = \left((x,y) := \begin{cases} 0 & , \frac{x}{y} < k \\ (\sqrt{y(1-b_1)} - \sqrt{x(1-b_2)})^2 & , \frac{x}{y} < \frac{x}{y} \\ x-y & , \frac{1}{x} < \frac{x}{y} \end{cases}$$

Central limit theorem: For $\mathcal{H} < \frac{x}{\mathcal{Y}} < \frac{1}{\mathcal{H}}$

$$\lim_{L\to\infty} \mathbb{P}\left(\frac{\mathcal{H}(x,y)L - \mathcal{H}(Lx,Ly)}{\mathcal{T}_{x,y}L^{Y_3}} \le S\right) = F_{GUE}(S)$$





Tueday talk 2b Page 16

<u>Bethe ansatz diagonalization</u>

Consider the space-reverse ZRP with k particles ($\sum y_i = k$) and label stated by $(n_1 \ge n_2 \ge \dots \ge n_K) = \vec{n}$. Recall q-Hahn left eigenfunction: $\Psi_{\vec{z}}^{\ell}(\vec{n}) = \sum_{\sigma \in S(k)} \prod_{a>b} \frac{\overline{z}_{\sigma(a)} - \gamma_{\sigma(b)}}{\overline{z}_{\sigma(a)} - \overline{z}_{\sigma(b)}} \prod_{i=1}^{k} \left(\frac{1 - \sqrt{z}_{\sigma(i)}}{1 - \overline{z}_{\sigma(i)}} \right)^{n_{j}}$ indexed by $z_{1,...,} z_{k} \in \mathbb{C} \setminus \{1, \nu'\}$ and depending on q_{j}, ν only. <u>Theorem</u>: For $Z_i: \left| \frac{1-Z_i}{1-VZ} \cdot \frac{\alpha+V}{\alpha+1} \right| < 1, i=1,..., K$ $\left(\widetilde{B}^{\alpha,q\alpha}\Psi^{\ell}\right)(\vec{n}) = \prod_{i=1}^{k} \frac{1+q\alpha z_{i}}{1+\alpha z_{i}} \Psi^{\ell}(\vec{n})$

Follows Algebraic Bethe Ansatz, or recent work of [Borodin '14].

<u>Relation q-Hahn Boson transition operator</u>

Recall that for the q-Hahn Boson process with parameters $q_{,\mu,\nu}$, $\mathcal{V} = \prod_{q,\mu,\nu}^{\mathsf{Boson}} \Psi_{\vec{z}}^{\ell} = \prod_{j=1}^{\kappa} \frac{1-\mu z_j}{1-\nu z_j} \Psi_{\vec{z}}^{\ell}$.

This, along with the Plancherel theory implies that we can write

$$\widetilde{B}^{\alpha,q,\alpha} = \mathbb{P}^{\mathsf{Boson}}_{q,q\alpha,\nu} (\mathbb{P}^{\mathsf{Boson}}_{q,-\alpha,\nu})^{-1}.$$

Note: While q-Hahn Boson process can be factored into free evolution equation and 2-body boundary conditions, the general ZRP considered here does not admit such a factorization.

Direct and inverse Fourier type transforms

Let
$$W^{k} = \left\{ f: \left\{ n_{1} \ge \dots \ge n_{k} \mid n_{j} \in \mathbb{Z} \right\} \rightarrow \mathbb{C} \text{ of compact support} \right\}$$
$$\overset{k}{\bigcup} = \left(\bigcup \left[\left(\frac{1 - \nu \ge 1}{1 - \varepsilon_{1}} \right)^{\pm 1}, \dots, \left(\frac{1 - \nu \ge 1}{1 - \varepsilon_{k}} \right)^{\pm 1} \right]^{S(k)} = \text{symmetric Lawrent poly's in } \left(\frac{1 - \nu \ge 1}{1 - \varepsilon_{j}} \right), 1 \le j \le k.$$

Direct tranform: $F: \mathcal{W}^{k} \rightarrow \mathcal{C}^{k}$ $\mathcal{F}: \mathbf{f} \longmapsto \sum_{\mathbf{n}, \mathbf{z}, \ldots \geq \mathbf{n}_{\mathbf{k}}} \mathbf{f}(\mathbf{n}) \cdot \mathcal{V}_{\mathbf{z}}^{\mathbf{r}}(\mathbf{n}) =: \langle \mathbf{f}, \mathcal{V}_{\mathbf{z}}^{\mathbf{r}} \rangle_{\mathbf{n}}$ Inverse transform: $\mathcal{M}: \mathcal{C}^{k} \longrightarrow \mathcal{M}^{k}$ $J: G \mapsto (q-1)^{k} q^{-\frac{k(k-1)}{2}} \frac{1}{(2\pi i)^{k} k!} \oint \cdots \oint \det \left[\frac{1}{q w_{i} - w_{j}} \right]_{i,j=1}^{k} \bigwedge_{j=1}^{k} \frac{w_{j}}{(1 - w_{j})(1 - v w_{j})} \Psi_{\vec{w}}^{l}(\vec{n}) G(\vec{w}) d\vec{w}$ $=: \langle \Psi^{l}(\vec{n}), G \rangle_{\vec{w}}$

Plancherel isomorphism theorem

<u>Theorem [Borodin-C-Petrov-Sasamoto '14]</u> On spaces \mathcal{W}^k and \mathcal{C}^k , operators \mathcal{F} and \mathcal{J} are mutual inverses of each other.

Isometry:
$$\langle f, g \rangle_{W} = \langle Ff, Fg \rangle_{E}$$
 for $f, g \in W^{k}$
 $\langle F, G \rangle_{E} = \langle JF, JG \rangle_{W}$ for $F, G \in C^{k}$

Proof of JF = Id uses residue calculus in nested contour version of J, while proof of FJ = Id uses existence of simultaneously diagonalized family of matrices

<u>Back to the q-Hahn Boson particle system</u> <u>Corollary</u> The (unique) solution of the ZRP evolution equation particles at $\vec{n} = (2, 2, 2, 1, 0, 0, 0, -1, -3, -3)$ $f(t+1,\vec{y}) = \widetilde{B}^{\alpha,q\alpha} f(t,\vec{y})$ with $f(0,\vec{y}) = f_0(\vec{y})$ is heights $\vec{y}(\vec{n})$, k=11 particles $f(t, \vec{y}(\vec{n})) = \mathcal{J}\left(\left(\prod_{j=1}^{k} \frac{1+q\alpha z_{i}}{1+\alpha z_{i}}^{t} \right)^{t} f_{0}\right) \quad \text{eigenvalue of } H \text{ corr. to } V_{\vec{z}} \xrightarrow{V_{a^{2}} \mathcal{J}_{a^{2}} \mathcal{J}_{$ Y3=0 $=\frac{1}{(2\pi i)^{k}} \oint \cdots \oint \prod_{a < b} \frac{z_{a} - z_{b}}{z_{a} - q z_{b}} \prod_{i=1}^{k} \left(\frac{1 - v z_{j}}{1 - z_{i}}\right)^{n_{j}} \frac{1}{(1 - z_{j})(1 - v z_{j})} \left(\prod_{j=1}^{k} \frac{1 + q \alpha z_{i}}{1 + \alpha z_{i}}\right)^{t} \left\langle f_{0}, \Psi_{\vec{z}}^{r} \right\rangle d\vec{z}$

Already know \mathbb{F}_{0}^{1} for step initial data $f_{0}(\vec{n}) = \prod_{\{n_{i} \geq 1, 1 \leq i \leq k\}}$

Can solve Kolmogorov forward equation for transition probabilities

<u>AEP - ZRP duality</u>

Define a duality functional
$$H(\vec{x}, \vec{y}) := \prod_{i \in \mathbb{Z}} q^{(X_i + i)Y_i} (= 0 \text{ if } y_i > 0 \text{ for any } i \leq 0)$$

Theorem [C-Petrov '15]: $T^{\alpha, q\alpha} H = H(\tilde{B}^{\alpha, q\alpha})^T$
Corollary: $E[H(\vec{x}(t), \vec{y})] = (\tilde{B}^{\alpha, q\alpha})^T E[H(\vec{x}(0), \vec{y})]$

<u>Corollary</u>: For the AEP with step initial data $\{X_n(o) = -n\}_{n \ge 1}$

$$\begin{bmatrix} q^{(X_{n_{i}}(t)+n_{i})+\dots+(X_{n_{k}}(t)+n_{k})} \end{bmatrix} = \frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2\pi i)^{k}} \oint \dots \oint \prod_{A < B} \frac{Z_{A}-Z_{B}}{Z_{A}-q,Z_{B}} \int_{j=1}^{k} \left(\frac{1-\nu Z_{j}}{1-Z_{j}}\right)^{j} \left(\frac{1+qx}{1+\alpha Z_{j}}\right)^{t} \frac{dZ_{j}}{Z_{j}}$$

$$(n_{1} \ge n_{2} \ge \dots \ge n_{k})$$

$$*0 (z_{i} \cdots (1)^{2} z_{k} \ge z_{k-1})^{2} \cdot \sqrt{-1}$$

This is the starting point for distributional formulas and asymptotics.

ZRP self-duality

Define a duality functional
$$G(\overline{g}, \overline{y}) := \prod_{i \ge j} q_i g_i^{y_i}$$

Theorem [C-Petrov '15]: $B^{\alpha}, q^{\alpha} G = G(\overline{B}^{\alpha}, q^{\alpha})^{\top}$

- There are other derivative self-dualities which comes from this.
- This generalizes the ASEP self-duality [Schutz '97], [Borodin-C-Sasamoto '12] and yields a self-duality for stochastic six-vertex which enables the computation of $\mathbb{E}[\mathcal{V}^{k N_{y}}(\tilde{g}^{(t)})]$, where we have that $\mathcal{V} = q\bar{j}$, $N_{y}(\tilde{q}) = \#$ particles in \tilde{q} left of y.
- AEP-ZRP duality generalizes that for q-Hahn TASEP/Boson.

<u>J>1 via fusion</u>

Define the higher horizontal spin ZRP transition operator as

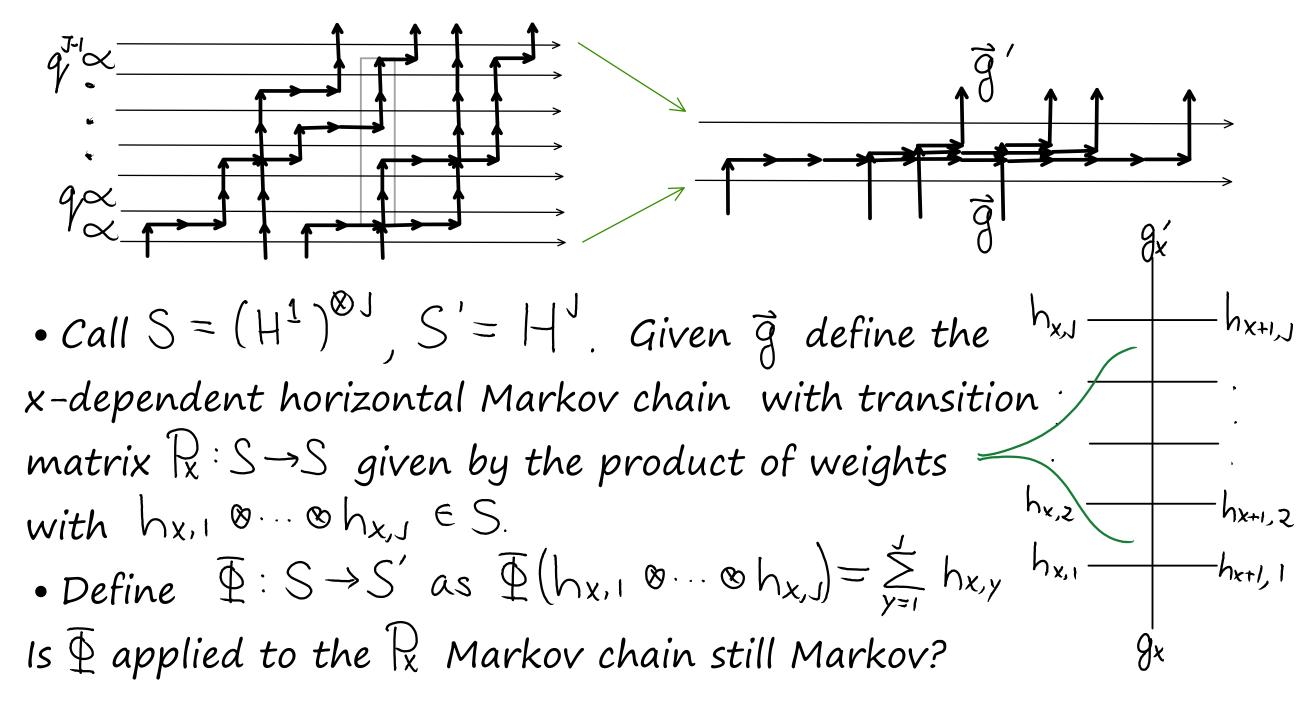
$$B^{\alpha,q,\alpha} := B^{\alpha,q\alpha} B^{q\alpha,q^2\alpha} \cdots B^{q^{\alpha},q^{\alpha}}$$

Clearly this is still stochastic (if each B was) and it is diagonalized via the same eigenfunctions with eigenvalue $\prod_{j=1}^{k} \frac{1+q_j^j \propto z_j}{1+\alpha z_j}$

<u>Question</u>: Can this be realized via a sequential update Markov chain using some $L_{\alpha}^{(J)}: V^{I} \otimes H^{J} \rightarrow V^{I} \otimes H^{J}$?

<u>Answer</u>: Yes, due to [Kirillov–Reshetikhin '87] fusion procedure. This simplifies on the line and we provide a probabilistic proof.

J>1 via fusion

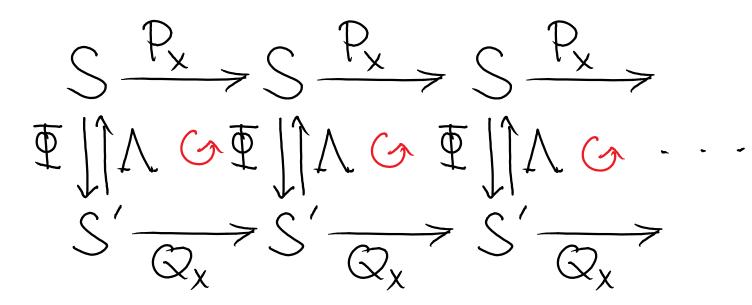


Markov function theory

<u>Theorem [Pitman-Rogers '80]</u>: If there exists a Markov kernel $\Lambda : S' \rightarrow S$ such that

$$Q_{\mathsf{X}} := \bigwedge \mathbb{R} \, \oint : \, \mathsf{S}' \to \mathsf{S}' \text{ satisfies } \bigwedge \mathbb{R} \, = \, \mathbb{Q}_{\mathsf{X}} \, \bigwedge \, \mathbb{R} \, = \, \mathbb{Q}_{\mathsf{X}} \, \mathbb{R} \, = \, \mathbb{Q}_{\mathsf{X}} \, \mathbb{R} \, \mathbb{R} \, = \, \mathbb{Q}_{\mathsf{X}} \, \mathbb{R} \, \mathbb{R}$$

Then starting the \mathcal{P}_{x} chain with measure $\Lambda(y; \bullet)$, its image under \oint coincides in law with the \mathbb{Q}_{x} chain start at y.



Tueday talk 2b Page 26

Applying markov function theory

Define
$$\Lambda(h_x; h_{x,1} \otimes \cdots \otimes h_{x,j}) = \mathbb{Z}^{-1} \mathbb{I}_{\Phi(h_{x,1} \otimes \cdots \otimes h_{x,j}) = h_x} \prod_{y:h_{x,y}=1}^{y} \mathbb{I}_{\Phi(h_{x,1} \otimes \cdots \otimes h_{x,j}) = h_x} \mathbb{Y}_{y:h_{x,y}=1}$$

1 1

This is the conditional distribution of $h_{x,1} \otimes \cdots \otimes h_{x,J}$ given its sum.

<u>Theorem [C-Petrov '15]</u>: Both conditions of Pitman-Rogers are satisfied and thus the Q_x chain started with $h_x = 0$ provides a way to sequentially update $\vec{q} \rightarrow \vec{q}'$ so as to agree with $B^{\alpha}, q^{\beta} \alpha$. In particular, we may define $\int_{-\infty}^{(J)} (q_{x,hx}; g'_{x,hx+i}) = Q_x (h_{x,hx+i})$.

Can also develop a recusion in J for the L-matrix elements by decomposing J vertical steps in to 1 followed by J–1.

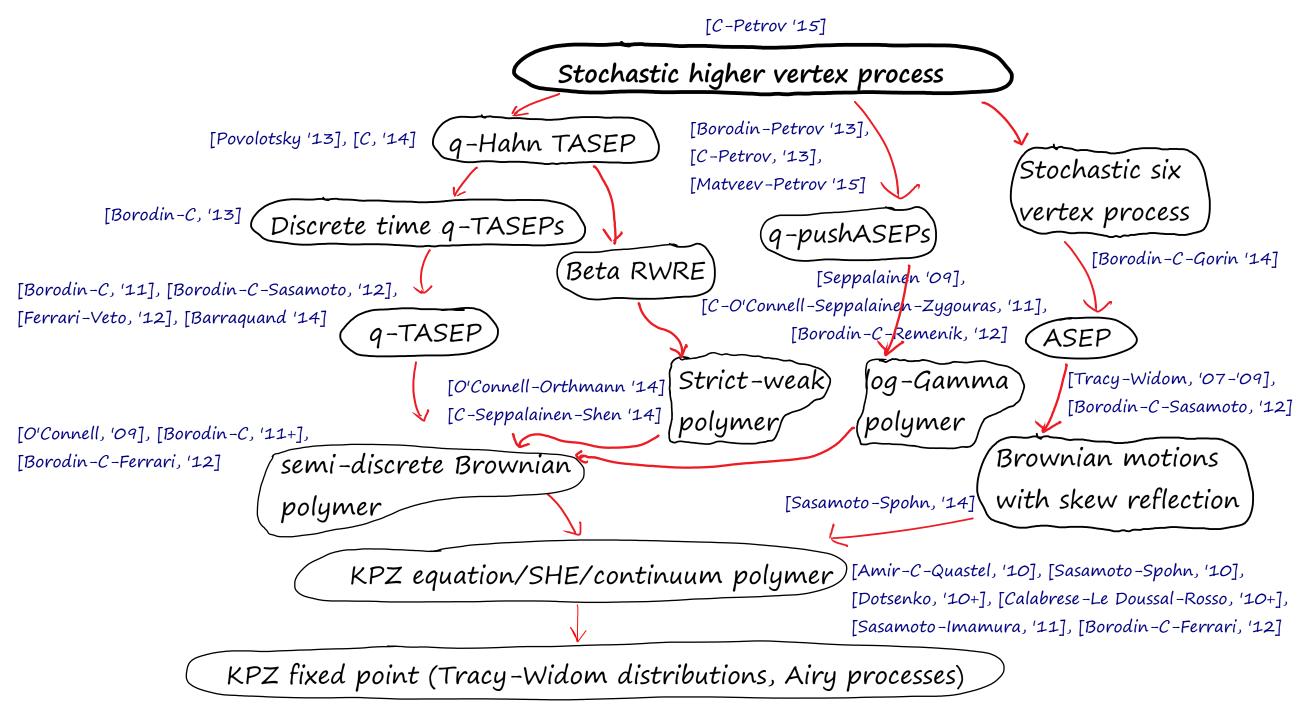
Explicit formula for higher spin L-matrix

Based on [Mangazeev '14] we solve the recursion explicitly ($\beta = \alpha q_{i}^{J}$)

$$\frac{\sum_{\alpha}^{(j)}(i,j_{1};i_{2},j_{2})}{(i,j_{1};i_{2},j_{2})} = \prod_{i_{1}+j_{1}=i_{2}+j_{2}}^{(j+j_{1})} q + \frac{\sum_{\alpha}^{j}(j_{2}-i_{2})}{q} + \frac{\sum_{\alpha}^{j}(j_{2}-i_{1})+i_{1}j_{1}}{q} + \frac{\sum_{\alpha}^{j}(j_{2}-i_{1})+i_{1}j_{1}}{q} + \frac{\sum_{\alpha}^{j}(j_{2}-i_{1})+i_{2}j_{1}}{q} + \frac{\sum_{\alpha}^{j}(j_{2}-i_{1})+i_{2}j_{2}}{q} + \frac{\sum_{\alpha}^{j}(j_{2}-$$

We can analytically continue in β . Positivity is generally lost, though taking $\beta = -\mu$ and setting $\alpha = -\nu$ we recover it. This specialization corresponds to the q-Hahn Boson process update.

<u>Degenerations to known integrable stochastic systems in KPZ class</u>



Summary

- Found stochastic L-matrix and constructed ZRP/AEP from it.
- Diagonalized via complete Bethe ansatz basis.
- Described two Markov dualities (AEP-ZRP and ZRP-ZRP).
- Combined duality and diagonalization to find moment formulas.
- Gave Markov functions proof of fusion to get J>1 L-matrices.
- Provided explicit formula for 4-parameter (q, v, α, J) family of processes encompassing all known integrable KPZ class models.
- Many directions: asymptotics, new degenerations, other initial data, product matrix ansatz, higher rank groups, boundary conditions, connections to Macdonald–like processes...