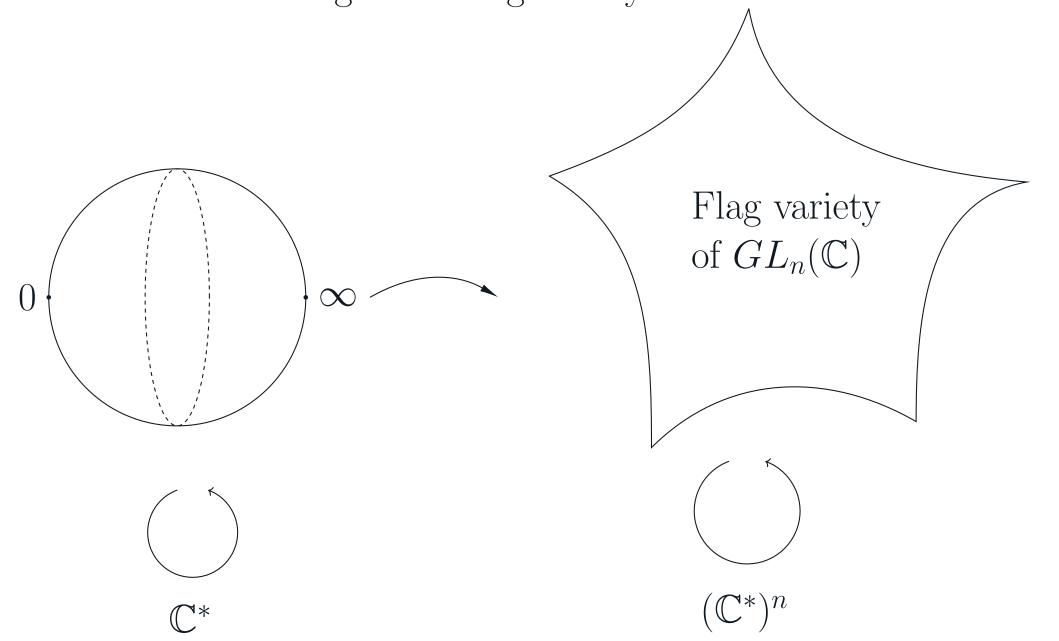
Equivariant K-theory of Laumon Spaces and Dual Verma Module of $U_q(\mathfrak{gl}_n)$

Che Shen

Background

Given $\mathbf{d} = (d_1, ..., d_{n-1})$, the Laumon space $\mathcal{M}_{\mathbf{d}}$ (also known as based quasimaps to the flag variety) is a partial compactification of the moduli space of degree \mathbf{d} maps from \mathbb{P}^1 to the flag variety of $GL_n(\mathbb{C})$ such that $\infty \in \mathbb{P}^1$ is mapped to the standard flag in the flag variety.



The torus $T = \mathbb{C}^* \times (\mathbb{C}^*)^n$ acts on $\mathcal{M}_{\mathbf{d}}$, so we can consider the *equivariant* cohomology or K-theory of it. This was extensively studied in [2, 1, 8, 4, 5]. An action of $U_q(\mathfrak{gl}_n)$ on $\bigoplus_{\mathbf{d}} K_T(\mathcal{M}_{\mathbf{d}})$ can be constructed geometrically. It was first observed in [1] that, for a generic highest weight $\boldsymbol{\lambda} = (\lambda_1, ..., \lambda_{n-1})$,

$$\left. \bigoplus_{\mathbf{d}} K_T(\mathcal{M}_{\mathbf{d}}) \right|_{a_i = q^{\lambda_i}} \simeq \operatorname{Verma}(\boldsymbol{\lambda} - \rho)$$

where ρ is half sum of positive roots.

The data on the geometric side and on the representation theory side match nicely. For example,

equivariant parameters \longleftrightarrow highest weight degree $\mathbf{d} \longleftrightarrow$ weight space

Euler characteristic pairing on $K_T(\mathcal{M}_\mathbf{d}) \longleftrightarrow$ Shapovalov form

Fixed point basis of $K_T(\mathcal{M}_\mathbf{d}) \longleftrightarrow$ Gelfand-Tsetlin basis

The goal of this paper is to study what happens when the equivariant parameters a_i 's are specialized to integral highest weight $(\lambda_1, ..., \lambda_n)$.

Laumon Spaces $\mathcal{M}_{\mathbf{d}}$

Given $\mathbf{d} = (d_1, ..., d_{n-1}), d_i \in \mathbb{Z}_{\geq 0}$, let $\mathcal{M}_{\mathbf{d}}$ denote the moduli of flag of sheaves on \mathbb{P}^1 :

$$\mathcal{F}_1 o \mathcal{F}_2 o \cdots o \mathcal{F}_n \simeq \mathcal{O}_{\scriptscriptstyle
m I\! D}^{\oplus n}$$

such that

- \mathcal{F}_i is locally free of rank i and degree d_i
- $\mathcal{F}_i \to \mathcal{F}_{i+1}$ is injective as a map of sheaves.
- Restricting to $\infty \in \mathbb{P}^1$, the flag

$$\mathcal{F}_1|_{\infty} o \mathcal{F}_2|_{\infty} o \cdots o \mathcal{F}_n|_{\infty} \simeq \mathbb{C}^{\oplus n}$$

is the standard flag in \mathbb{C}^n .

It is known that for each \mathbf{d} , $\mathcal{M}_{\mathbf{d}}$ is a smooth algebraic variety of dimension $2(d_1 + \ldots + d_{n-1})$.

Equivariant K-theory and Correspondences

 $K_T(\mathcal{M}_{\mathbf{d}})$ is a module over

$$K_T(pt) \simeq \mathbb{Z}[q^{\pm}, a_1^{\pm}, ..., a_n^{\pm}]$$

The a_i 's and q are called equivariant parameters.

The key technical tool is the localization formula in equivariant K-theory. For any $\alpha \in K_T(\mathcal{M}_d)$

$$\alpha = \sum_{F \in \mathcal{M}_{I}^{T}} \frac{\alpha|_{F}}{\Lambda^{\bullet} N_{F/\mathcal{M}_{d}}^{\vee}}$$

where N_{F/\mathcal{M}_d} denotes the normal bundle to F, and Λ^{\bullet} is the signed sum of exterior powers.

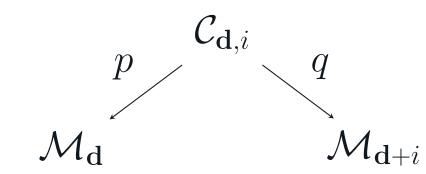
The action of $U_q(\mathfrak{gl}_n)$ is defined using correspondences. Let $\mathcal{C}_{\mathbf{d},i}$ be the moduli space of

$$\mathcal{F}_1 o \mathcal{F}_2 o \cdots \mathcal{F}_i' o \mathcal{F}_i o \cdots o \mathcal{F}_n \simeq \mathcal{O}_{\mathbb{P}^1}^{\oplus n}$$

satisfying similar conditions as $\mathcal{M}_{\mathbf{d}}$, but with the additional constraint that

• $\mathcal{F}_i/\mathcal{F}_i' = \mathcal{O}_0$, the structure sheaf supported at $0 \in \mathbb{P}^1$.

There are two projection maps



Up to invertable constants from $K_T(pt)$, the generators e_i, f_i of $U_q(\mathfrak{gl}_n)$ are given by

$$e_i := q_* p^*(\cdot) : K_T(\mathcal{M}_{\mathbf{d}}) \to K_T(\mathcal{M}_{\mathbf{d}+i})$$
$$f_i := p_*(q^*(\cdot) \otimes \mathcal{L}_i) : K_T(\mathcal{M}_{\mathbf{d}}) \to K_T(\mathcal{M}_{\mathbf{d}-i})$$

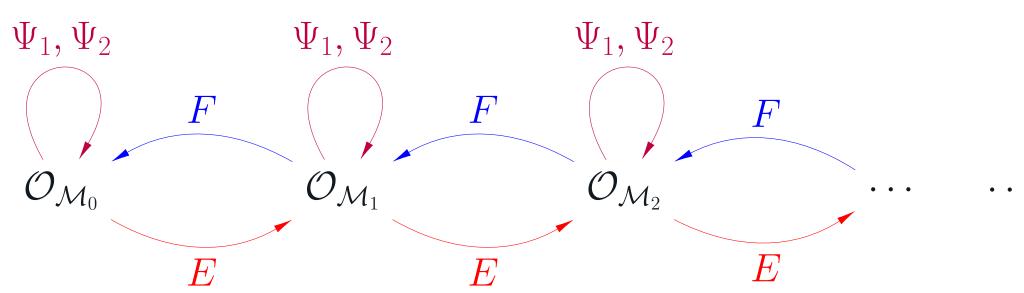
where \mathcal{L}_i denotes the tautological line bundle defined by $\mathcal{F}_i/\mathcal{F}_i'$.

Example: n = 2

In this case, $\mathcal{M}_{\mathbf{d}} \simeq \mathbb{C}^{2d}$, with equivariant weights

$$q, q^2, ..., q^d, \frac{a_2}{a_1}q, \frac{a_2}{a_1}q^2, ..., \frac{a_2}{a_1}q^d$$

and $C_d \simeq \mathcal{M}_d$. For each d, $K_T(\mathcal{M}_d) \simeq \mathbb{Z}$ and is generated by the structure sheaf.



The coefficients of the $U_q(\mathfrak{gl}_2)$ action are given by

$$E[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}] = (1 - q^{-d})(1 - \frac{a_1}{a_2}q^{-d})[\mathcal{O}_{\mathcal{M}_{\mathbf{d}+1}}], \quad F[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}] = \frac{1}{a_1q^{-d}}[\mathcal{O}_{\mathcal{M}_{\mathbf{d}-1}}]$$

$$\Psi_1[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}] = \frac{q^d}{qa_1}[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}], \quad \Psi_2[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}] = \frac{q^{-d}}{q^2a_2}[\mathcal{O}_{\mathcal{M}_{\mathbf{d}}}]$$

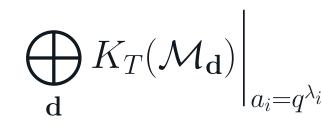
A technical remark: The generators E, F, Ψ_1, Ψ_2 we use here differ from the usual generators e, f, ψ_1, ψ_2 by

$$E = \psi_2 e, \quad F = f \psi_1, \quad \Psi_i = \psi_i^2 \text{ for } i = 1, 2$$

This choice fits better with the geometric picture.

Main Results

Theorem 1. The module



is isomorphic to the dual Verma module of $U_q(\mathfrak{gl}_n)$ of highest weight $\lambda - \rho$, where ρ is half sum of positive roots of \mathfrak{gl}_n .

This can be easily verified in the n = 2 example. The action of F is never 0, but the action of E vanishes when $\frac{a_1}{a_2} = q^k$ for a positive integer k. In this case, the dual Verma module has a k-dimensional submodule.

Verma module has a natural basis – the *PBW basis* following the Poincaré-Birkhoff-Witt theorem. Their dual basis form a basis of the dual Verma module. The dual PBW basis can be realized geometrically. To this end, we will need the notion of *stable envelopes*, which is a map

$$K_T(\mathcal{M}_{\mathbf{d}}^T) \to K_T(\mathcal{M}_{\mathbf{d}})$$

Stable envelopes were initially defined in [3, 7] for Nakajima quiver varieties. In a later paper [6], the construction was generalized to varieties that satisfy the milder condition that "attracting directions can be globalized". It is this construction that can be applied to $\mathcal{M}_{\mathbf{d}}$.

Theorem 2. The stable envelopes of \mathcal{O}_F for $F \in \mathcal{M}_{\mathbf{d}}^T$ coincide with the dual PBW basis under the isomorphism in Theorem 1.

Generalization to Affine Case

Theorem 1 can be generalized to the affine case. More precisely, we consider the affine Laumon space $\mathcal{M}_{\mathbf{d}}^{\mathrm{aff}}$, which is the moduli space of parabolic sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ framed at the divisor $\infty \times \mathbb{P}^1 \cup \mathbb{P}^1 \times \infty$.

On the representation theory side, one considers the dual Verma module of $U_q(\widehat{\mathfrak{gl}}_n)$.

Theorem 3. For any highest weight that is not at the critical level, the module $\bigoplus_{\mathbf{d}} K_T(\mathcal{M}_{\mathbf{d}}^{aff})$ with equivariant parameters specialized according to the highest weight is isomorphic to the dual Verma module of $U_a(\widehat{\mathfrak{gl}}_n)$.

References

- [1] Alexander Braverman and Michael Finkelberg. "Finite difference quantum Toda lattice via equivariant K-theory". In: *Transformation Groups* 10 (2005), pp. 363–386.
- [2] Boris Feigin et al. "Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces". In: Selecta Mathematica 17 (2011), pp. 337–361.
- [3] Davesh Maulik and Andrei Okounkov. "Quantum groups and quantum cohomology". In: $arXiv\ preprint\ arXiv:1211.1287\ (2012).$
- [4] Hiraku Nakajima. "Handsaw quiver varieties and finite W-algebras". In: $arXiv\ preprint\ arXiv:1107.5073\ (2011)$.
- [5] Andrei Neguţ. "Affine Laumon spaces and a conjecture of Kuznetsov". In: $arXiv\ preprint$ $arXiv:1811.01011\ (2018).$
- [6] Andrei Okounkov. "Inductive construction of stable envelopes". In: Letters in Mathematical Physics 111 (2021), pp. 1–56.
- [7] Andrei Okounkov. "Lectures on K-theoretic computations in enumerative geometry". In: arXiv preprint arXiv:1512.07363 (2015).
- [8] Aleksander Tsymbaliuk. "Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces". In: *Selecta Mathematica* 16.2 (2010), pp. 173–200.