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1 Introduction

We investigate the genus theory of Binary Quadratic Forms. Genus theory is a

classification of all the ideals of quadratic fields k = Q(
√
m). Gauss showed that if

we define an equivalence relation on the fractional ideals of a number field k via the

principal ideals of k, and denote the set of equivalence classes by H+(k) that this

is a finite abelian group under multiplication of ideals called the ideal class group.

The connection with knot theory is that this is analogous to the classification of the

homology classes of the homology group by linking numbers. We develop the genus

theory from the more classical standpoint of quadratic forms. After introducing

the basic definitions and equivalence relations between binary quadratic forms, we

introduce Lagrange’s theory of reduced forms, and then the classification of forms

into genus. Along the way we give an alternative proof of the descent step of

Fermat’s theorem on primes that are the sum of two squares, and solutions to the

related problems of which primes can be written as x2 + ny2 for several values of

n. Finally we connect the ideal class group with the group of equivalence classes of

binary quadratic forms, under a suitable composition law. For d < 0, the ideal class
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group of Q(
√
d) is isomorphic to the class group of integral binary quadratic forms

of discriminant d.

2 Binary Quadratic Forms

2.1 Definitions and Discriminant

An integral quadratic form in 2 variables, is a function f(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ Z. A quadratic form is said to be primitive if a, b, c are relatively

prime. We will discuss the theory of primitive quadratic forms. An integer is

represented by a quadratic form = f(x, y) if the equation f(x, y) = m has a solution

in integers.

We now define an equivalence relation on binary quadratic forms. We say that

f(x, y) ≡ g(a, b) iff ∃ p, q, r, s such that f(x, y) = g(px+ qy, rx+ sy), and ps− rg =

±1. Two forms are properly equivalent if ps − rg = 1.It is immediately clear that

two equivalent forms represent the same numbers. The reader may verify that

equivalence and proper equivalence does indeed give us an equivalence relation on

integral binary quadratic forms. Now let us see an example of a problem we have

solved during this course rephrased in the language of binary quadratic forms. Let

p be a prime number. What odd primes p are represented by the integral quadratic

form x2 + y2? It was seen that:

p ≡ 1 (mod 4) ↔ there exists x, y ∈ Z such that x2 + y2 = p

The proof consists of two steps:

1. Descent Step: If p|x2 + y2 and gcd(x, y) = 1, then p = x2 + y2.
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2. Reciprocity Step: If p ≡ 1 (mod 4) then −1 is a quadratic residue modulo p.

The reciprocity step is a consequence of quadratic reciprocity. In this section

we build up a basic theory of quadratic forms, and use it to prove the descent step,

giving an alternative proof of Fermat’s theorem.

We begin with a lemma that makes it immediately clear how our notions of equiv-

alence will help us understand binary quadratic forms.

Lemma 2.1. Let a ∈ Z. Then f(x, y) represents a iff f(x, y) is properly equivalent

to the form g(x, y) = ax2 + bxy + cy2 for some b, c ∈ Z.

Proof. Suppose f(z, w) = a, where gcd(x, y) = 1. Then by Bezout’s lemma there

exists q, r ∈ Z such that qz− rw = 1. Changing variables to the properly equivalent

form f(zx + ry, wx + qy) we see that the coefficient of x2 is simply f(z, w) = a.

Conversely, suppose f(x, y) ≡ g(x, y) = ax2 + bxy + cy2, then g(1, 0) represents a,

and so f(x, y) does as well.

We define the discriminant of a quadratic form ax2 + bxy + cy2 in the familiar

way, as D = b2 − 4ac. A form where D > 0 is called indefinite, and a form where

D < 0 is called definite.

Exercise 1. Prove that a definite form either represents all positive or all negative

integers, according to the sign of a.

We claim that discriminant is invariant under the equivalence relation defined

above, so that we can speak of the discriminant of a class. Let f(x, y) = ax2+bx+c,

and suppose that g(x, y) = f(px + ry, qx + sy) where ps− qr = ±1. Then D(g) =

(2apr + bps + brq + 2cqs)2 − 4(ap2 + bpq + cq2)(ar2 + brs + cs2) = (b2 − 4ac)(ps−

qr)2 = b2 − 4ac = D(f), as desired. Equipped with a notion of discriminant that
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is compatible with our equivalence relation, we can immediately see its application

our original problem of representing integers with integral binary quadratic forms.

Lemma 2.2. An odd integer M is properly represented by a primitive form of dis-

criminant D iff D ≡ x2 (mod m) for some x ∈ (Z/mZ)∗, (D,M) = 1, and D is a

quadratic residue (mod 4).

Proof. Suppose that D ≡ t2 (mod m), then D = t2 + km, for some k ∈ Z. Since

m is odd we can assume that t2 ≡ D (mod 4). Then taking D = t2 + km (mod 4)

and using (m,D) = 1 we deduce that 4|k, so k = 4c. Then D = b2 − mc, and so

D is the discriminant of the quadratic form mx2 + bxy + cy2, which represents m.

Conversely if D is the discriminant of a primitive form representing m, then it is the

discriminant of a primitive form mx2 + kxy + sy2, and so D ≡ k2 (mod m). Since

the form is primitive we get that (m,D) = 1.

So we have shown that we can determine if a number m is representable by a

primitive quadratic form of discriminant D, based on its quadratic residue mod D.

Note that if m is representable then m + kD is as well ∀k ∈ Z. However, at this

stage knowing that a given number is representable by a form of discriminant D is

not especially helpful information, as there are many different quadratic forms with

a given discriminant. This is where Lagrange’s theory of reduced forms comes in;

we will show that every form is equivalent to a much simpler form. We will also

restrict our attention to forms with D < 0, as they are the ones we really care about

anyways.
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2.2 Lagrange’s Theory of Reduced Forms

In this section we state several of the results without proof when the reasoning is

lengthy, the interested reader can find these proofs in [1].

Definition 1. A primitive positive definite quadratic form ax2 + bxy + cy2 is said

to be reduced if c ≥ a ≥ |b|, and when |b| = a or a = c, b ≥ 0.

Then we have due to Legendre:

Theorem 2.3. Every primitive form with D < 0 is properly equivalent to a unique

reduced form.

The proof finds the form in each equivalence class minimizing |b|, and then shows

that if the conditions are not met a form with smaller |b| can be constructed. For

details see [1, p.28-29]. As an example, the forms 7x2 ± 6xy + 13y2 are clearly

equivalent via (x, y) → (−x, y), but since they are reduced, they cannot be properly

equivalent (uniqueness).

An important consequence of the theorem is that there are finitely many proper

equivalence classes of forms with a given discriminant D < 0. Since b2 − 4ac = D,

and c ≥ a ≥ |b|, then we have −D ≥ 4a2 − a2 =⇒ a ≤
�
−D/3 and since

a ≥ |b|, and b2 − 4ac is fixed, there are finitely many values of (a, b, c) such that

ax2+ bxy+ cy2 is a reduced form of discriminant D, and hence finitely many proper

equivalence classes of forms of discriminant D. We are now equipped to give an

alternative proof of the descent step in the proof of Fermat’s theorem that prime

p ≡ 1 (mod 4) ⇐⇒ its represented by the form x2 + y2. We note that p|x2 + y2

for some x, y ⇐⇒ (−4
p ) = 1, which by Lemma 2.2 means that p is represented by
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a primitive form of discriminant −4. But then |b| ≤ a ≤
�

4/3, so b = 1, 0. But if

b = 1 then b2 − 4ac ≡ 1 (mod 4) �= −4. So b = 0, and thus ac = 1 =⇒ a = c = 1,

since −x2 − y2 isn’t reduced. Thus if p|y2 + x2 for some x, y then p is representable

by f(x, y) = x2 + y2.

2.3 Genus Theory of Binary Quadratic Forms

Now that we can prove Fermat’s theorem with ease we may be feeling quite good

about ourselves. However, we have made use of the fact that there was only one

reduced form with discriminant −4. In general we will not be able to do this, and so

a further classification of reduced forms with discriminant D is necessary. Indeed it

is a theorem of Landau that if we let h denote the number of equivalence classes of

such forms, h(−4k) = 1 ⇐⇒ n = 1, 2, 3, 4, 7. And indeed there may be more than

one form in each equivalence class. Our goal is to describe solutions of p = x2+ny2,

so we need to get a sense of what other primitive forms of discriminant −4n are out

there.

Definition 2. We say that two reduced forms of discriminant D < 0 are in the

same genus if they represent the same set of elements in (Z/DZ)∗.

It is immediately clear that equivalent reduced forms are in the same genus. We

claim that if f represents x ∈ (Z/DZ)∗, as does g, then f and g are in the same

genus. To this end we show that the numbers in (Z/DZ)∗ representable by forms

f form an equivalence class with respect to the subgroup of representable numbers,

and so these equivalence classes are disjoint.

Definition 3. We define the principal form as x2− D
4 y

2 when D ≡ 0 (mod 4), and

x2 + xy + 1−D
4 y2 when D ≡ 1 (mod 4).
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Denote by λ the subgroup of (Z/DZ)∗ of representable numbers. Then we have

the following theorem describing the equivalence relation in (Z/DZ)∗:

Theorem 2.4. The values in (Z/DZ)* represented by the genus of the principal form

make up a subgroup H ⊂ λ. Then the values in (Z/DZ)∗ represented by an arbitrary

reduced binary quadratic form of discriminant D consists of a coset xH, x ∈ λ.

Proof. It can be show with relative ease that H is in fact a subgroup. In the case

that D ≡ 1 (mod 4) it is simply the subgroup of quadratic residues in (Z/DZ)∗

which is seen via the computation:

4(x2 + xy +
1−D

4
y2) ≡ (2x+ y)2 (mod D)

So we focus on showing that the elements in (Z/DZ)∗ represented by an arbitrary

form f(x, y) are an H coset of λ. To do so we need the following lemma due to none

other than Gauss:

Lemma 2.5. Let f(x, y) an integral quadratic form, and let M be an integer. Then

f represents at least one integer that is relatively prime to M .

Then by the lemma we can say WLOG that f(x, y) = ax2 + bxy + cy2where

(a, 4n) = 1. We first address the case D ≡ 0 (mod 4), letting D = 4n. Then we can

conclude the b2 ≡ 0 (mod 4), and hence 2|b. Let b = 2b�.So we can write:

af(x, y) = a2x2 + 2b�axy + b�2y2 + (ac− b�2)(y2)

which since 4b�2 − 4ac = 4n, is simply

af(x, y) = (ax+ b�y)2 + ny2 ≡ x2 + ny2
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and hence the values represented by f(x, y) ⊂ a−1H, and conversely if s = a−1h

where h ∈ H then we need only show that af(x, y) represents h, but af(x, y) is

simply the principal form, which represents h by definition. Thus each reduced form

of discriminant D represents a coset aH of the subgroup H ⊂ λ in (Z/DZ)∗.

Now we apply the corrollary that if p a prime and p � |n then p ∈ H ⇐⇒ p ≡ x2

(mod 4n) or x2+n (mod 4n) for some x ∈ (Z/DZ)∗, to a few of the principal forms

we were interested in. We compute:

p = x2 + 6y2 ⇐⇒ p ≡ 1, 7 (mod 24)

p = x2 + 15y2 ⇐⇒ p ≡ 1, 19, 31, 49 (mod 60) etc.

...

And so we have solved the problem of representing primes as x2 + ny2 for several

values of n.

3 The Class Group

Earlier we separated forms of discriminant D into equivalence classes, and it is nat-

ural to see if a group structure can be defined on these classes. This is where the

study of binary quadratic forms, is related to the study of the ideal class group of

the number field Q(
√
D). The ideal class group is the group of fractional ideals

modulo the principal ideals. In a principal ideal domain, the ideal class group is

trivial.

We describe the correspondence between classes of ideals of Q(
√
D), and reduced

binary quadratic forms of discriminant D, following from [2]. We then describe a

composition law on quadratic forms due to Gauss, which turns out to be compatible
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with multiplication of fractional ideals. It is then evident that the ideal class group

of Q(
√
D) is equal to the class group of quadratic forms of discriminant D.

Denote the ring of integers of K = Q(
√
D) by OK . Then the set of fractional

ideals of OK modulo the subring of principal fractional ideals forms a group known

as the ideal class group. The group law is multiplication of ideals in the usual way.

Then every fractional ideal of OK can be written in the form c(ax + (B +
√
D)y)

for some integers a,B, g, x, y [2]. We say that two ideals are equivalent if they differ

by an element of OK ; i.e. I ≡ T ⇐⇒ ∃ α, β ∈ OK such that αI = βT . Then as

in the case of quadratic forms we can reduce ideals modulo this equivalence relation

to ideals (2a, b +
√
D) where 4a|b2 −D. There is a bijection between such reduced

forms and quadratic forms with discriminant D. We send this ideal to the form

(ax+ b+
√
D

2 y)(ax+ b−
√
D

2 y) = a(ax2+bxy+cy2), which has discriminant D. We now

describe the composition of quadratic forms that corresponds to ideal multiplication.

Definition 4. Given f(x, y) and g(x, y) primitive forms of discriminant D < 0 then

h(x, y) is their composition if f(x, y)g(z, w) = h(B(x, y, z, w), S(x, y, z, w)) where

B, S are bilinear forms B = axz + bxw + cyz + dyw, S = exz + fxw + gyz + kyw,

where af − eb = f(1, 0) and ag − ec = g(1, 0).

Then it is an important result of Gauss that this composition respects proper

equivalence, and makes the set of classes of forms into a finite abelian group. This

is the class group of binary quadratic forms. But then by the above reasoning, the

ideal class group is seen to be isomorphic to the class group. This composition is

abelian, and because we have shown that there are only finitely many equivalence

classes of reduced forms of discriminant D, we have shown that the ideal class group

of Q(
√
D) is thus finite and abelian!
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