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1 Introduction

We will explore the analogy between Milnor Invariants and Multiple Residue Symbols.
This builds on the analogy between link groups and Galois groups with restricted
ramification. We closely follow the flow of argument and a large chunk of the notation
laid out in chapter 7 and chapter 8 of Morishita’s ’Knots and Primes’ ([Mo12]). Many
proofs are omitted, even of non-trivial theorems. The aim of this expository paper is
to briefly tell the story of an interesting analogy, without necessarily getting bogged
down in the details.

2 Brief Summary of the Analogy between Link

Groups and Galois Groups with Restricted Ram-

ification

We have the following theorem about quotients of the link group by the lower central
series.
Theorem 1 (See [Mo12] Theorem 7.1) For each d ∈ N, there exists y

(d)
i ∈ F such

that
GL/G

(d)
L =< x1, ..., xr|[x1, y(d)1 ] = · · · = [xr, y

(d)
r = 1, F (d) = 1 >

y
(d)
i = y

(d+1)
i mod F (d)

where y
(d)
i is a word representing a longitude βi of Ki in GL/G

(d)
L . We also have

βj =
∏
i 6=j

α
lk(Ki,Kj)
i mod G

(2)
L

♣
The following theorem suggests an analogy between the theorem on links above
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and the following theorem on the Galois groups pro-l extension of p-adic ratio-
nals. But first we must fix some definitions. We fix a prime number l and a set
S = {p1, ..., pr} ⊂ Z of primes that are all congruent to 1 mod l. Consider the exten-
sion lim→iki =: QS(l), where the limit is taken over all ki/Q ⊂ Q (fix an algebraic
closure of Q) such that the degree of the extension over Q is a power of l and unram-
ified outisde of S and the infinite primes. We call QS(l) the maximal pro-l extension
of Q unramified outside of S and the infinite primes. Set GS(l) = Gal(QS(l),Q).
Further, fix eS to be the max exponent e such that all of the pi are still congruent to
1 mode 1e. Set m = le.

Further fix an algebraic closure of Qpi and analogously define Qpi(l), to be the maxi-
mal pro-l extension of Qpi . It can be shown ([Mo12]), that

Qpi(l) = Qpi(ξln , (pi)
l−n|n ≥ 1)

(where ξln denotes a primitive mth root of unity). Consider the Galois group GQpi (l)
:=

(Gal(Qpi(l)/Qpi). Then GQpi (l)
has generators τi called the monodromy and σi called

the Frobenius automrphism defined as follows :

τi(ξln) = ξln

τi((pi)
l−n

) = ξln(pi)
l−n

and
σi(ξln) = ξpiln

σi(pi)
l−n

= (pi)
l−n

with relation
τ pi−1i [τi, σi] = 1

Choose embeddings Q → Qpi . These embeddings give rise to an embedding on
pro-l extensions QS(l) → Qpi(l) and thus to a homomorphism on the Galois groups
ηi : Gal(Qpi(l)/Qpi) → GS(l). Let the images of the Frobenius and monodromy
isomorphisms under ηi continue to be labeled by τi and σi. Let F denote the free
group on words x1, ..., xr. Then let F̂ (l) be the projective limit taken over all quotients
of F by subgroups of index equal to a power of l. Finally before giving the theorem,
we define the mth power residue symbol for Qpi . When Qpi((a)1/m/Qpi) is unramified,
the mth power residue is given by

(
a

p
)n :=

σ(a1/m)

a1/m
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where σ is the Frobenius map. We have the following theorem:

Theorem 2 The pro-l group GS(l) has the following presentation:

GS(l) =< x1, ..., xr|xp1−11 [x1, y1] = · · · = xpr−1r [xr, yr] = 1 >

where yi ∈ F̂ (l) is the pro-l word representing σi. Define lk(pi, pj)∈ Zl and lkm(pi, pj) ∈
Z/mZ by

σj =
∏
i 6=j

τ
lk(pi,pj)
i mod GS(l)(2)

lkm(pi, pj) := lk(pi, pj) mod m

And we have
ξlk(pi,pj)m = (

pi
pj

)m

3 The Fox Free Differential Calculus

Consider a commutative ring R and group G. Then we have a group algebra R[G]
and the natural augmentation map R[G] → R which will be denoted by εR[G]. By
Z << X1, ..., Xr >> we denote the formal power series in non-commuting variables
X1, ...., Xr over Z. The degree, denoted deg(f), of a power series f = Σai1...inXi1 ...Xin

is the smallest n such that the coefficient ai1...in ∈ Z is non-zero.

Consider the free group F on letters x1, ..., xr. We have a homomorphism M : F →
Z << X1, ..., Xr >>

× defined by

xi → 1 +Xi

and
x−1i → 1−Xi +X2

i − ...

Theorem 3 M is injective.

We call M the magnus embedding. Given any f ∈ Z[F ] we have a Magnus expansion
given by M(f) = εZ[F ](f)+ΣI=(i1...in),1≤i1,...,in≤rµ(I, f)XI , where XI = Xi1 ...Xin . The
coefficients µ(I, f) are the Magnus coefficients. We have a theorem:

Theorem 4 For any f ∈ Z[F ], there exists fi uniquely for each i between 1 and
r such that f = εZ[F ](f) + Σr

i=1fi(xi − 1).
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We see that fj is the Fox free derivative of f with respect to xj and we set fj = ∂f
∂xj

.

The Fox free derivative satisfies the usual properties one would except from a sort of
derivative. These are captured in the following theorem:

Theorem 5 The Fox free derivative ∂/∂xj : Z[F ] → Z[F ] satisfies the following
properties:

(1)
∂xi
∂xj

= δij

(2)
∂(f + g)

∂xj
=

∂f

∂xj
+

∂g

∂xj

(3)
∂af

∂xj
= a

∂f

∂xj
, f, g ∈ Z[F ], c ∈ Z

(4)
fg

∂xj
=

∂f

∂xj
εZ[F ](g) + f

∂g

∂xj
f, g ∈ Z[F ]

(5)
∂f−1

∂xj
= −f−1 ∂f

∂xj
f ∈ F

We inductively define the higher derivatives:

∂nf

∂xi1 ...xin
:=

∂

∂xi1
(
∂n−1f

∂xi2 ...xin
)

We also write DI(f), where I = (i1, ..., in).

Theorem 6 For f, g ∈ Z[F ] and I = (i1, ..., in) we see that µ(I; f) = εZ[F ](DI(f))
and µ(I; fg) = ΣI=JKµ(J ; f)µ(K; g) where the sum is taken over all pairs (J,K) such
that JK=I.

We have the following theorem relating lower central series and the degree of the
image of the Magnus embedding:

Theorem 7 For d ≥ 2 we have F (d) = {f ∈ F |deg(M(f)− 1) ≥ d}

Now we define the shuffle and discuss the shuffle relation among Magnus coefficients.
Let I = (i1, ..., in) and J = (j1, ..., jn) be a pair of multi-indices. A pair of sequences
of integers ((f(1), ..., f(n)), (g(1), ..., g(m)) is denoted the shuffle of I and J if both
sequences are increasing and bounded above and below by m+n and 1, respectively
and there exists a multi-index H = (h1, ..., hl) such that

hf(s) = is (s = 1, ..., n)

4



hg(t) = jt (t = 1, ...,m)

and such that for any a = 1, ..., l there exists s or t such that a = f(s) or a = g(t).
The index H is called the result of a shuffle. We set Sh(I, J) to denote the set of
results of shuffles of I and J. We let PSh(I, J) denote the set of results of shuffles
(f, g) such that f(s) 6= g(t) for any pair (s, t) such that 1 ≤ s ≤ n and 1 ≤ t ≤ m.
We have the following theorem:

Theorem 8 For multiple indices I and J and f ∈ F , we see

µ(I; f)µ(J ; f) = ΣH∈Sh(I,J)µ(H; f)

4 Milnor Invariants

Let L be a link with components K1, ..., Kr in S3. Let GL be the link group of L. Let
y
(d)
i be the word representing a longitude βi of Ki in GL/G

(d)
L from above. Consider

the Magnus expansion

M(y
(d)
i ) = 1 + ΣI=(i1,...,in),1≤i1,...,≤rµ

(d)(Ii)XI

Theorem 7 implies for that large d, µ(d)(I) is independent of d. So we set µ(I) =
µ(d)(I) for sufficiently large d. We say that µ(I) is the Milnor number. We define the
ideal ∆(I) to be the ideal of Z with generators consisting of the µ(J) as J runs over
the cyclic permutations of proper subsequences of I, when |I| ≥ 2. (When |I| = 1,
we define µ(I) to be 0.) The Milnor µ invariant is defined as µ(I) mod ∆(I).

Theorem 9 (1) µ(ij) = lk(Ki, Kj) (i 6= j).
(2) If 2 ≤ |I| ≤ d, µ(I) is a link invariant of L.
(3) For indices I and J and i between 1 and r we have

ΣH∈PSh(I,J)µ(Hi) = 0 mod g.c.d. {∆(Hi)|H ∈ PSh(I, J)}

(4) µ(I) is invariant under cyclic permutations of the index I. For a multi-index
I = (i1, ..., in) consider the map ρI : F → Nn(Z/∆(I)) from the free group F to the
group of n× n unipotent upper-triangular matrices with entries in Z/∆(I), given by

(ρI(f))j,k = ε( ∂i+jf
∂xij ...xij+k

) mod ∆(I) for j < k ≤ n.

Proof: We only comment on the proof of (2). It can be shown (See [Mo12] Remark

7.2) that if L and L′ are isotopic links then GL/G
(d)
L and GL′/G

(d)
L′ are isomorphic
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through a map such that for given pairs (αi, βi) and (α′i, β
′
i) of meridians and longi-

tudes of knot components in L and L′, (αi, βi) is taken to (γα′iγ
−1, γβ′iγ

−1). Thus in
order to show (2) it is enough to show:

(a) µ(I) is unchanged if y
(d)
in

is replaced by a conjugate.

(b) µ(I) is unchanged if xi is switched out by a conjugate.

(c) µ(I) is unchanged if y
(d)
in

is multiplied by a conjugate of [xi, y
(d)
i ].

(d) µ(I) is unchanged if yin is multiplied by an element of F (d).

The proof of (1) follows quickly by Theorem 1. Indeed, we have that βj ≡
∏

i 6=j α
lk(Ki,Kj

i modG
(2)
L .

Thus we see from the Magnus embedding

M(y
(d)
i ) = 1 + Σi 6=jlk(Ki, Kj)Xi +HigherOrderTerms

We see immediately that µ(ij) = µ(ij) = lk(Ki, Kj).

The proof of (3) follows quickly from Theorem 8. Observe that we have

µ(Ii)µ(Ji) = ΣH∈Sh(I,J)µ(Hi)

We have that LHS ≡ 0 mod g.c.d. {∆(Hi)|H ∈ PSh(I, J)}. However µ(Hi) on the
RHS is congruent to 0 when H is not a result of a proper shuffle. The claim follows.

We now show (4) in full detail. The argument follows that of [Mo12]. Set k strictly
greater than n = |I|. Project L onto a plane and divide each component Ki into
arcs αi1, ..., αiλi Let F be the free group on generators xij 1 ≤ i ≤ n, 1 ≤ j ≤ λi. It
follows from Mo12 chapter 2, that we have the following relation from the Wirtinger
presentation

r∏
i=1

λi∏
j=1

zijrijz
−1
ij = 1

Consider zi = ηk(ziλi). Then as ηk(rij) = 1modF (d) (1 ≤ j < λi) and ηk(riλi =
[xi, y

(d)]modF (d), we have by Theorem 7 that

r∏
i=1

zi[xi, y
(d)
i z−1i ∈ F (d)

. Let K be the 2 sided ideal defined by

K := {ΣIcIXI ∈ Z << X1, ..., Xr >> |cI = 0mod∆(I), |I| ≤ k}

Consider the Magnus embeddings M(y
(d)
i ) = 1 + Hi, where the Hi are higher order

terms. By definition, XjXiHi, XjHiXi, XiHiXj, HiXiXj all belong to K. We observe

M(zi[xi, y
(d)
i ]z−1i ) = 1 +M(zi)([M(xi),M(y

(d)
i ](M(x−1i M(y

(d)−1

i M(z−1i )
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= 1 +M(zi)(XiHi −HiXi)M(x−1i )M(y
(d)−1

i )M(z−1i ) ≡ 1 +XiHi −HiXi mod K

Then Theorem 8 implies that Σr
i=1(XiHi − HiXi ∈ K. The coefficients on XiJ is

µ(Ji)− µ(iJ) so we see that µ(Ji) ≡ µ(iJ) mod ∆(iJ). ♣

Now we come to our final theorem on Milnor invariants:

Theorem 10 (1) The homomorphism ρI factors through the link group GL. We
have surjectivity if the first n− 1 indices of I are distinct.
(2) Suppose that the first n−1 indices of I are distinct. Then if XI → XL is the Galois
covering corresponding to Ker(ρI) , with Galois group Gal(MI/S

3) = Nn(Z/∆(I)).
In the case that ∆(I) is non-trivial, the Fox completion MI → S3 of XI → XL satis-
fies that MI → S3 is a Galois covering with ramification over the link Ki1∪ ...∪Kin−1 .
Let βin be a longitude of Kin , then we have that ρI(βin is zero off the diagonal and
away from ρI(βin)(1,n) = µ. As a consquence, we see that µ = 0 is equivalent to Kin

being completely decomposed in MI → S3.

5 Extension to the Profinite Calculus

Per usual, the ’primes’ side is ’larger’ than the knots side. This time this manifests
itself in that we must resort to a more ’massive’ profinite Fox free differential calculus.
Towards developing this end we have a theorem:

Theorem 11 We have an isomorphism of topological Zl algebras Z1[[F̂ (l)]] ∼= Zl <<
X1, ..., Xr >> which restricts to the Magnus embedding on Z[[F ]]. M̂ is denoted the
pro-l Magnus isomorphism.

We have a pro-l Magnus expansion and pro-l Magnus coefficients:

M̂(f) = ε(f) + ΣI=(i1,...,in),1≤i1,...,in≤rµ̂(I, f)XI

Theorem 12 For f ∈ Zl[[F̂ (l)]] there exists uniquely fj ∈ Zl[[F̂ (l)]] for each i be-
tween 1 and r such that

f = ε(f) + Σr
i=1fi(xi − 1)

We say that fj is the pro-l Fox free derivative of f w.r.t. xj and set ∂f/∂xj.

The pro-l Fox derivative ∂/∂xj : Zl[[F̂ (l)]] → Zl[[F̂ (l)]] restricts to the ordinary
Fox derivative on Z[F ]. It is no surprise that the pro-l Fox derivative satisfies the
same linearity and Leibniz like rules as the Fox derivative. We also define higher
pro-l derivatives in the same way we defined ordinary higher Fox derivatives, and are
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denoted by the same ’DI ’ notation. We also have direct generalizations of Theorems
6-8 to the pro-l case.

Now tensoring with Z/mZ for m = le for some fixed e ≥ 1 we have the mod m

Magnus isomorphism Mm : Z/mZ[[F̂ (l)]] ∼= Z/mZ << X1, ..., Xr >>

6 Arithmetic Invariants

We again fix a prime number l and a set S = {p1, ..., pr} ⊂ Z of primes that are all
congruent to 1 mod l. Further, fix eS to be the max exponent e such that all of the
pi are still congruent to 1 mode 1e. Fix m = le.

Recall that by Theorem 2 we have that GS(l) =< x1, ..., xr|xpi−1i [xi, yi] = 1, 1 ≤
i ≤ r >. Consider the pro-l Magnus expansion

M̂(yi) = 1 + Σµ̂(Ii)XI

By the analogue of the Theorem 7, we have that µ̂(Ii) = ε(DI(yi)). From the mod m
Magnus expansion we also can consider µm = µ̂(I) mod m. For an index I satisfying
1 ≤ |I| ≤ leS , let ∆m(I) be the ideal of Z/mZ with generators

(
leS

t

)
(1 ≤ t < |I|)

and µm(J) for J a proper subsequence of I or a permutation thereof. The Milnor µ̂
invariant is given by µ̂m(I) := µm(I) mod ∆m(I). We have the following analogy to
Theorem 11:

Theorem 13 (1) ξ
µm(ij)
m = (

pj
pi

)m where ξm is the primitive mth root of unity sat-

isfying ξl
s

m = ξl
s

ln = ξln−s

(2) µ̂m(I) depends on just S and I, when 2 ≤ |I| ≤ leS .
(3) Fix r between 2 and leS . Then for indices I and J with |I|+ |J | = r− 1 we have

ΣH∈PSh(I,J)µ̂m(Hi) = 0 mod g.c.d. {∆(Hi)|H ∈ PSh(I, J)}

Proof: We only pause here to note that not only the statement of Theoren 12 mirrors
the statement of Theorem 9, but the method of proof does as well. Observe that
(2) is proved (in [Mo12]) by showing that µ(I)m independent of the choices of mon-
odromy over pi and the Frobenius automorphism over pi. The argument boils down
to showing:
(a) µ(I)m is unchanged if yin is switched out by a conjugate.

(b) µ(I)m is unchanged if xi is switched out by a conjugate.

(c) µ(I)m is unchanged if yin is multiplied by a conjugate of xpi−1i [xi, yi]. It is worth
remarking that the methods of proof of (1) and (3) also mirror that of (1) and (3) in
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Theorem 10. ♣

Consider the group homomorphism ρm,I : F̂ (l) → Nn(Z/mZ/∆m(I) from the pro-l
free group on r generators to the group of upper triangular matrices with entries in

Z/mZ/∆m(I) by (ρ(m,I))j,k = ε( ∂k−1f
∂xij ...xik

). We have our final theorem:

Theorem 14 (1) The homomorphism ρ(m,I) factors through the Galois group GS(l).
We have surjectivity if the first n− 1 indices of I are distinct.
(2) Suppose that the first n− 1 indices of I are distinct. Let k(m,I) be the extension
over Q corresponding to Ker(ρ(m,I)). Then k(m,I) is Galois and ramified over the
primes pi1 , ..., pin such that Gal(k(m,I)/Q) = Nn(Z/∆m(I)). The Frobenius automor-
phism σin over pin satisfies ρ(m,I)(σin) that ρI(βin is zero off the diagonal and away
from ρI(βin)(1,n) = µ. As a consquence, we see that µm = 0 is equivalent to pin being
completely decomposed in k(m,I)/Q. Further the results stated here suggest an anal-
ogy between Milnor numbers µ(i1...in) and l − adic Milnor numbers µ̂ suggest that
these share an analogous relationship. In addition, the Milnor invariants µ seem to
share an analogous relationship with the mod m Milnor invariants µm as evidenced
in Theorems 13 and 9. We see that the Chapter 5 of [Mo12] establishes the analogy
between the decomposition groups of knots and the decomposition groups of primes.
Theorems 14 and 10 enrichen this analogy. It is fitting that the results on the ’knots’
side of things rest can be shown with the Fox free differential calculus and that the
results on the ’primes’ can be shown with the pro-l Fox differential calculus using
analogous methods. The analogy is thus made much deeper since the analogous the-
orem statements have even similar methods of argument.

The following source was not cited but was used for clarification:
M. Morishita, Milnor invariants and Massey products for prime numbers. Compositio
Math. (2004) 69-83
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