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We have seen how the knot group, that is, the fundamental group of the knot exterior, gives us a knot in-
variant, whereas its abelianization, which by the Hurewicz theorem is also the first homology group of the knot
exterior, does not help us in distinguishing knots because it is always Z. Although the knot group is an obvious
knot invariant, it is not the most useful invariant when studying knots because it is not that easy to work with
nonabelian groups. However, we can obtain a polynomial (strictly speaking, Laurent polynomial) knot invariant,
the Alexander polynomial, from the first homology group of the infinite cyclic cover of the knot exterior. This
knot invariant turns out to have a close analogy with the Iwasawa polynomial in number theory.

1. HOMOLOGY GROUPS

By the Hurewicz theorem, which states that the first homology group of a space is isomorphic to the abelian-
ization of its fundamental group, one could conceivably give a definition of the Alexander polynomial in terms of
fundamental groups and abelianizations. However, in order to provide more intuition regarding the Alexander
polynomial, we shall first introduce homology groups.

As we shall see, homology is directly related to the decomposition of a space into cells, and may be regarded
as an algebraization of the most obvious geometry in a cell structure: how cells of dimension n attach to cells of
dimension n− 1. It provides information about the number of “holes of each dimension” in a space.

Example 1.1. Let us do an example to get an idea of what homology measures. Consider the graph X1 shown in
Figure 1, which consists of two vertices joined by four edges; for the purpose of computing homology, we shall
make the edges directed. When studying the fundamental group of X1, we consider loops formed by sequences
of edges, starting and ending at a fixed basepoint. For example, we could first travel along the edge a, then
backward along the edge b, to obtain a loop ab−1. A more complicated loop would be ab−1ac−1 ba−1cb−1. Now,
a key feature of the fundamental group is that it is nonabelian in the sense that ab−1 is regarded as a different
element from b−1a and ab−1ac−1 ba−1cb−1, which enriches but simultaneously complicates the theory.
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Let us look at some examples to see what the idea is. Consider the graph X1 shown

in the figure, consisting of two vertices joined by four edges.

When studying the fundamental group of X1 we consider
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loops formed by sequences of edges, starting and ending

at a fixed basepoint. For example, at the basepoint x , the

loop ab−1 travels forward along the edge a , then backward

along b , as indicated by the exponent −1. A more compli-

cated loop would be ac−1bd−1ca−1 . A salient feature of the

fundamental group is that it is generally nonabelian, which both enriches and compli-

cates the theory. Suppose we simplify matters by abelianizing. Thus for example the

two loops ab−1 and b−1a are to be regarded as equal if we make a commute with

b−1 . These two loops ab−1 and b−1a are really the same circle, just with a different

choice of starting and ending point: x for ab−1 and y for b−1a . The same thing

happens for all loops: Rechoosing the basepoint in a loop just permutes its letters

cyclically, so a byproduct of abelianizing is that we no longer have to pin all our loops

down to a fixed basepoint. Thus loops become cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation, so cycles become linear

combinations of edges with integer coefficients, such as a − b + c − d . Let us call

these linear combinations chains of edges. Some chains can be decomposed into

cycles in several different ways, for example (a − c) + (b − d) = (a − d) + (b − c) ,
and if we adopt an algebraic viewpoint then we do not want to distinguish between

these different decompositions. Thus we broaden the meaning of the term ‘cycle’ to

be simply any linear combination of edges for which at least one decomposition into

cycles in the previous more geometric sense exists.

What is the condition for a chain to be a cycle in this more algebraic sense? A

geometric cycle, thought of as a path traversed in time, is distinguished by the prop-

erty that it enters each vertex the same number of times that it leaves the vertex. For

an arbitrary chain ka + `b +mc + nd , the net number of times this chain enters y
is k + ` +m + n since each of a , b , c , and d enters y once. Similarly, each of the

four edges leaves x once, so the net number of times the chain ka + `b +mc + nd
enters x is −k− `−m−n . Thus the condition for ka+ `b+mc +nd to be a cycle

is simply k+ ` +m+n = 0.

To describe this result in a way that would generalize to all graphs, let C1 be the

free abelian group with basis the edges a,b, c, d and let C0 be the free abelian group

with basis the vertices x,y . Elements of C1 are chains of edges, or 1 dimensional

chains, and elements of C0 are linear combinations of vertices, or 0 dimensional

chains. Define a homomorphism ∂ :C1→C0 by sending each basis element a,b, c, d
to y−x , the vertex at the head of the edge minus the vertex at the tail. Thus we have

∂(ka + `b +mc + nd) = (k + ` +m + n)y − (k + ` +m + n)x , and the cycles are

precisely the kernel of ∂ . It is a simple calculation to verify that a−b , b−c , and c−d

FIGURE 1. Directed graph X1.

The idea of homology is to try to simplify matters by abelianizing. For example, the loops ab−1, b−1a and
ab−1ac−1 ba−1cb−1 are regarded as equal if we make a, b, c and d all commute with each other. Thus, one
consequence of abelianizing is that loops are no longer required to have a fixed basepoint; rather, they become
cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation instead. Then cycles become linear combinations of
edges with integer coefficients, for example a− b+ c − b = a− 2b+ c. We call such linear combinations chains
of edges. For example, a− b+ c is a chain that cannot arise from a cycle, whereas the chain a− 2b+ c can arise
from the loop ab−1cb−1. We will call a cycle (in the algebraic sense) any chain that can be decomposed into one
or more cycles in the previous geometric sense. (Thus, for example, we can also think of the chain a− 2b+ c as
arising from a disjoint union of the (geometric) cycles a− b and c− b.)

A natural question then arises: when is a chain a cycle (in the algebraic sense)? A disjoint union of geometric
cycles is characterised by the property that the number of ingoing edges is equal to the number of outgoing edges
at every vertex. For an arbitrary chain ka+ l b+mc+nd, the number of ingoing edges at y is k+ l+m+n, while
the number of outgoing edges is −k− l−m− n (and vice versa at x). Hence the condition for ka+ l b+mc+ nd
to be a cycle is that k+ l +m+ n= 0.

Let us try to describe this result in a way that generalizes to all directed graphs. Let C1 be the free abelian
group on the edges (in this case a, b, c and d) and let C0 be the free abelian group on the vertices (in this case
x and y). The elements of C1 are chains of edges (1-dimensional chains), while the elements of C0 are chains of
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vertices (0-dimensional chains). Define a homomorphism ∂1 : C1→ C0 by

∂1(edge) = (vertex at head of edge)− (vertex at tail of edge)

(in this case, ∂1 sends all four of a, b, c and d to y − x). Then the (algebraic) cycles are precisely the kernel of
∂1. In our example, one can easily check that the kernel of ∂1 is generated by the three cycles a− b, b− c and
c− d. This conveys the information that the graph X1 has three visible “holes” bounded by these cycles.

Let us now enlarge the graph X1 by attaching a 2-cell, that is, an open disc A along the cycle a− b to produce
a 2-dimensional CW complex or cell complex, as in Figure 2. (We shall not define a CW complex rigorously, but it
should be clear from this construction what is allowed.) If we think of the 2-cell A as being oriented clockwise,
then we can think of its boundary as the cycle a− b. This cycle is now homotopically trivial since we have filled in
the “hole” bounded by the cycle a− b. This suggests that we should form a quotient group of cycles by modding
out by the subgroup generated by a − b. In this quotient the cycles a − c and b − c are equivalent, which is
consistent with the fact that they are homotopic in X2.
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form a basis for this kernel. Thus every cycle in X1 is a unique linear combination of

these three most obvious cycles. By means of these three basic cycles we convey the

geometric information that the graph X1 has three visible ‘holes,’ the empty spaces

between the four edges.

Let us now enlarge the preceding graph X1 by attaching a 2 cell A along the

cycle a − b , producing a 2 dimensional cell complex X2 . If

x

y

dca bA

we think of the 2 cell A as being oriented clockwise, then

we can regard its boundary as the cycle a− b . This cycle is

now homotopically trivial since we can contract it to a point

by sliding over A . In other words, it no longer encloses a

hole in X2 . This suggests that we form a quotient of the

group of cycles in the preceding example by factoring out

the subgroup generated by a − b . In this quotient the cycles a − c and b − c , for

example, become equivalent, consistent with the fact that they are homotopic in X2 .

Algebraically, we can define now a pair of homomorphisms C2
∂2------------→ C1

∂1------------→ C0

where C2 is the infinite cyclic group generated by A and ∂2(A) = a − b . The map

∂1 is the boundary homomorphism in the previous example. The quotient group

we are interested in is Ker ∂1/ Im ∂2 , the 1 dimensional cycles modulo those that are

boundaries, the multiples of a−b . This quotient group is the homology group H1(X2) .
The previous example can be fit into this scheme too by taking C2 to be zero since

there are no 2 cells in X1 , so in this case H1(X1) = Ker ∂1/ Im ∂2 = Ker ∂1 , which as

we saw was free abelian on three generators. In the present example, H1(X2) is free

abelian on two generators, b − c and c − d , expressing the geometric fact that by

filling in the 2 cell A we have reduced the number of ‘holes’ in our space from three

to two.

Suppose we enlarge X2 to a space X3 by attaching a second 2 cell B along the

same cycle a−b . This gives a 2 dimensional chain group C2

x

y

da cb

consisting of linear combinations of A and B , and the bound-

ary homomorphism ∂2 :C2→C1 sends both A and B to a−b .

The homology group H1(X3) = Ker ∂1/ Im ∂2 is the same as

for X2 , but now ∂2 has a nontrivial kernel, the infinite cyclic

group generated by A−B . We view A−B as a 2 dimensional

cycle, generating the homology group H2(X3) = Ker ∂2 ≈ Z .

Topologically, the cycle A − B is the sphere formed by the cells A and B together

with their common boundary circle. This spherical cycle detects the presence of a

‘hole’ in X3 , the missing interior of the sphere. However, since this hole is enclosed

by a sphere rather than a circle, it is of a different sort from the holes detected by

H1(X3) ≈ Z×Z , which are detected by the cycles b − c and c − d .

Let us continue one more step and construct a complex X4 from X3 by attaching

a 3 cell C along the 2 sphere formed by A and B . This creates a chain group C3

FIGURE 2. Directed graph X2 obtained by attaching a 2-cell to X1.

Once again, we can describe this result in a way that generalizes to all 2-dimensional cell complexes as follows.
Let C2 be the free abelian group generated by the 2-cells, and define ∂2 to be the homomorphism taking a cell

to its boundary (in this case, ∂2(A) = a− b). We thus have a sequence of homomorphisms C2
∂2−→ C1

∂1−→ C0, and
the quotient group that we are interested in is ker∂1/ im∂2, the 1-dimensional cycles modulo boundaries. This
quotient group is the first homology group H1(X2).

We can continue this procedure by considering CW complexes obtained by adding cells in higher dimensions.
It is clear what the general pattern should be: for a CW complex X , one has chain groups Cn(X ) which are the
free abelian groups generated by the n-cells (i.e. open n-discs) of X , and homomorphisms ∂n : Cn(X )→ Cn−1(X )
that are defined by linearity and the property that a cell is sent to its boundary.

Definition 1.2. The nth homology group Hn(X ) is the quotient group ker∂n/ im∂n+1.

We call chains in the kernel of ∂n cycles and chains in the image of ∂n+1 boundaries, so one should think
of homology as the quotient group of cycles modulo boundaries; as in the 1-dimensional example, it should
be the case that boundaries are always cycles. The major difficulty lies in defining ∂n in general. We have
seen how ∂1 and ∂2 should be defined, but it is less clear how to define ∂n for n ≥ 3. One solution to this
problem is to consider CW complexes built from simplices (the interval, triangle and tetrahedron are the 1-, 2-
and 3-dimensional instances of simplices respectively); these are called ∆-complexes. In this case, there is a easy
formula for the boundary map ∂n, and the homology groups thus defined are called simplicial homology groups.
The drawback of this approach, however, is that this is a rather restrictive class of spaces. (For instance, the CW
complex structure in Example 1.1 is not a ∆-complex structure. The type of homology we have computed in
Example 1.1 is called cellular homology, which turns out to be equivalent to simplicial homology.) Moreover, an
obvious question arises: given two different CW or ∆-complex structures on X , do they give rise to isomorphic
homology groups? To address this problem, one introduces singular homology groups, which are defined for all
spaces X , not just CW or∆-complexes, and then shows that the cellular, simplicial and singular homology groups
coincide whenever defined. We shall not define singular homology groups, since we are more interested in the
properties of homology groups instead of their various equivalent definitions. (It turns out that singular homology
can be characterized by a set of axioms consisting of the main properties it satisfies.) Here we simply state some
of the main properties of homology groups that one can deduce using singular homology:

• The homology groups Hn(X ) only depend on the space X and not on the CW or ∆-complex structure.
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• A map of spaces f : X → Y induces a homomorphism of homology groups f∗ : Hn(X )→ Hn(Y ) such that
( f g)∗ = f∗g∗ and id∗ = id; in particular, homeomorphic spaces have isomorphic homology groups. In
fact, homotopy equivalent spaces have isomorphic homology groups.

• If f ' g : X → Y , then f∗ = g∗ : Hn(X )→ Hn(Y ).
• A pair of topological spaces (X , A), A⊆ X induces a long exact sequence in homology via the inclusions

i : A→ X and j : (X ,;)→ (X , A) (we can think of a space X as a pair (X ,;):

· · · → H1(X )
j∗−→ H1(X , A)→ H0(A)

i∗−→ H0(X )
j∗−→ H0(X , A)→ 0.

(Here Hn(X , A) is a relative homology group. We shall not define relative homology groups, but if A
and X are CW complexes with A 6= ; a subcomplex of X , then Hn(X , A) = Hn(X/A) for n ≥ 1 and
H0(X , A)⊕Z∼= H0(X/A).)

2. SKEIN RELATION DEFINITION OF THE ALEXANDER POLYNOMIAL

There are several equivalent ways of defining the Alexander polynomial. The most elementary way is in terms
of a skein relation, that is, a relationship between three knot diagrams that are identical except at the same one
crossing. Specifically, the Alexander polynomial ∆(t) is defined by the following rules:

• ∆unknot(t) = 1.
• Given three (oriented) links L+, L− and L0 that are identical except as depicted in Figure 3 at one

particular crossing, the Alexander polynomials of the links L+, L− and L0 satisfy the relation

∆L+(t)−∆L−(t) + (t − t−1)∆L0
(t) = 0.

FIGURE 3. Variations in crossing of L+, L− and L0.

Example 2.1 (Alexander polynomial of trefoil). Treating the trefoil as L+, with the circled crossing as the one
that appears in Figure 3, we have

∆
� �

−∆
� �

+ (t − t−1)∆
� �

= 0,

where

∆
� �

=∆
� �

= 1

and

∆
� �

−∆
� �

+ (t − t−1)∆
� �

= 0.

Exercise 2.2. Show that ∆
� �

= 0.

Hence

∆
� �

=−t + t−1

and thus

∆
� �

= t2 − 1+ t−2.
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This definition in terms of a skein relation allows one to express both the Alexander polynomial (discovered
surprisingly early in 1923) and the Jones polynomial (discovered much later in 1984) as special cases of a more
general polynomial knot invariant, the HOMFLY polynomial (discovered almost immediately after in 1985). In
general, knot invariants that can be defined in terms of a skein relation are usually quantum invariants of interest
to quantum topologists. However, to establish the analogy between the Alexander polynomial and the Iwasawa
polynomial, we shall use a different definition of the Alexander polynomial, in terms of homology. Historically,
the Alexander polynomial was first formulated by Alexander in terms of homology, although he also showed
that the Alexander polynomial satisfies a similar skein relation; Conway later rediscovered the skein relation
in a different form and proved that the skein relation together with a choice of value for the unknot suffice to
determine the polynomial.
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