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p-adic integers and prime groups

As an arithmetic analogue of the tubular neighborhood, last time we defined the ring of
p-adic integers to be the inverse limit lim←−n

Z/(pn). Here is a concrete way to understand the
p-adic integers.

Example 1. Instead of arranging the integers on a line in the usual order, let us classify them
by their residues modulo p, p2, . . . , pn, . . .. We think that two integers x, y are closer if x − y
is more divisible by p. Because a p-adic integer is a sequence (an) where an+1− an is divisible
by pn, the an’s are getting closer and closer when n gets bigger and thus has a “limit” under
this p-adic sense of distance. The p-adic integer ring Zp simply consists of all these limits and
Z is dense in Zp. In sum, a p-adic integer is a limit of integers under the p-adic distance.

To make more precise meaning of the p-adic distance, we shall discuss some basic algebraic
properties of Zp. The following will not surprise you if you are familiar with the power series
ring C[[t]].

Theorem 1. A nonzero element x ∈ Zp can be uniquely written as x = u · pk, where u ∈ Z×
p

is a unit and k ≥ 0 is an integer.

Proof. Write x = (xn) and k be the largest power of p dividing x (equivalently, xk = 0 but
xk+1 ̸= 0). Then we can find a unique element u = (un) ∈ Zp such that x = pku . Moreover,
p - un, so un ∈ Z/(pn) is a unit.

So the arithmetic in Zp is much easier than that in Z. In particular,

Corollary 1. Zp is a UFD and all its nonzero ideals are of the form (pk). (0) and (p) are the
only two prime ideals.

Exercise. The natural map Zp → Z/(pk) induces an isomorphism Zp/p
kZp
∼= Z/pkZ.

The ring of p-adic integers Zp is like a local version of Z obtained via throwing away all
primes other than p. The usage of p-adic numbers is ubiquitous in modern number theory,
reflecting the importance of the local-global point of view. Zp has many similar properties as
Z (integrally closed, prime decomposition, Krull dimension 1, ...), but it is much simpler than
Z (local, complete, discrete valuation, ...). It allows us study arithmetic problems by studying
one prime at a time and then tying the local information thus obtained together.

The following Hensel’s lemma is the crucial property of Zp as a result of the completion
process.

Theorem 2 (Hensel’s Lemma). Let f(x) ∈ Z[x] and ā ∈ Fp be a simple root of the reduction
f̄(x) = f(x) mod p ∈ Fp[x]. Then ā lifts to a root a ∈ Zp of f(x).

Sketch of the proof. The key idea is to produce the solutions modulo pk inductively from ā.
Then taking the limit of these solutions gives a solution in Zp.

Corollary 2. Z×
p
∼= F×

p × (1 + pZp).

Proof. Consider the quotient map: Z×
p → F×

p , a 7→ a mod p. Clearly it is surjective and has
kernel 1 + pZp. So it suffices to show the exact sequence

1→ 1 + pZp → Z×
p → F×

p → 1

splits, which follows from Hensel’s lemma since we can lift each solution of xp−1 = 1 in Fp to
a solution in Zp.
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Remark. The proof shows that all (p− 1)th roots of unity exist in Z×
p .

Now let us turn back to the analogy between knot groups and prime groups, the linking
number and the Legendre symbol. Recall that we can interpret the linking number using
covering spaces. Let L ∪K be a link and X2 be the double covering of the knot complement
XL corresponding to the map ρ2 : GL → Z→ Z/2Z. Then ρ2([K]) = lk(L,K) mod 2.

Let p and q be two odd primes. Let us first work out the arithmetic analogue ρ2 : G{q} →
Z/2Z. Class field theory classifies all number fields with abelian Galois groups. The following
can be derived easily using class field theory.

Theorem 3. The maximal abelian extension of Q unramified outside p is Q(ζp∞) = ∪nQ(ζpn).

In the exercise last time we have known that Q(ζp∞) does satisfies the unramified outside
p condition and class field theory furthermore ensures that it is the maximal one. It follows
that

Gab
{q}
∼= Gal(Q(ζp∞/Q) = lim←−

n

(Z/(pn))× = Z×
p .

Using the structure of Z×
p , we construct the natural quotient map

ρ2 : G{q} → Gab
{q} → F×

q → Z/2Z.

ρ2 should corresponds to a quadratic extension of Q unramified outside q. What is it?
Let us assume for simplicity that q is congruent to 1 modulo 4. Then the natural option
K = Q(

√
q) is in fact a quadratic extension unramified outside q. In fact, its number ring is

OK = Z[1+
√
q

2 ] with discriminant dK = q. Now we can similarly define the mod 2 linking
number to be lk2(q, p) := ρ2(σp), where σp ∈ Gal(Q(

√
q)/Q) is the Frobenius automorphism

associated to p.

Theorem 4. (−1)lk2(q,p) =
(q
p

)
.

Proof. Notice that lk2(q, p) = 0 is equivalent to ρ2(σp) = Id, or σp(
√
q) =

√
q. By the

definition of the Frobenius automorphism, this is equivalent to
√
q ∈ F×

p , or q ∈ (F×
p )

2, which
happens exactly when

(q
p

)
= 1.

So the Legendre symbol tells us how primes are ”linked” together. This extra strucutre
shows the advantage of viewing primes as knots in a 3-dimensional space rather than plain
points on the line. Here is a picture of five primes “linked” as the Olympic rings.

We summarize the analogy obtained as follows.
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GL G{q}
Gab

L
∼= Z Gab

{q}
∼= Z×

q
∼= F×

q × (1 + qZp)

ρ2 : GL → Z→ Z/2Z ρ2 : G{q} → F×
q → Z/2Z

ρ2([K]) = lk2(L,K) ρ2(σp) = lk2(q, p)
lk(L,K) = lk(K,L)

(q
p

)
=

(p
q

)
h−1
2 (K) =

{
K1 ∪K2, lk2(L,K) = 0,

K, lk2(L,K) = 1
(p) =

{
p1p2,

(q
p

)
= 1

p,
(q
p

)
= −1

We finally tie up the beautiful story of the seemingly unrelated linking number and the
Legendre symbol. And it takes only three weeks. This is so amazing, isn’t it? Next time we
will start a new story line: the analogy between Alexander polynomials and Iwasawa theory.
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