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1. MONODROMY PERMUTATION REPRESENTATION

In the previous lecture, we saw how Aut(Y /X ) acts on a covering h : Y → X . Restricting to a fiber h−1(x), this
gives us an action Aut(Y /X ) on h−1(x). One can also define an action of π1(X , x) on a fiber h−1(x) in terms of
liftings of maps, which is closely related to the former action when the covering h : Y → X is Galois. For this, we
need the following proposition.

Proposition 1.1 (Homotopy lifting property). Given a covering space h : Y → X , a homotopy ft : Z → X (t ∈
[0, 1]) and a map ef0 : Z → Y lifting f0, there exists a unique homotopy eft : Z → Y of ef0 lifting ft .

In particular, taking Z to be a point, we obtain the path lifting property of a covering space h : Y → X : for
any path f : [0, 1]→ X and any lift y0 of the starting point f (0) = x0, there exists a unique path f̃ : [0,1]→ Y
lifting f starting at y0. Furthermore, for any homotopy ft of f , there exists a unique lift eft of ft such that eft is a
homotopy of f̃ .

The path lifting property now enables us to define an action of π1(X , x) on a fiber h−1(x) as follows. For a
loop [l] ∈ π1(X , x) and a point y ∈ h−1(x), we define y · [l] to be the ending point l̃(1), where l̃ is the lift of l
with starting point l̃(0) = y . The induced representation ρx : π1(X , x)→ Aut(h−1(x)) is called the monodromy
permutation representation of π1(X , x). Moreover, one can show that if h : Y → X is a Galois covering, then the
composite

π1(X , x)� h∗(π1(Y, y))\π1(X , x)∼= Gal(Y /X )
restrict to a fiber h−1(x)
−−−−−−−−−−−−→ Aut(h−1(x))

is precisely the monodromy permutation representation. Conversely, from the monodromy permutation repre-
sentation, one can recover the covering h : Y → X up to isomorphism.

Example 1.2. Suppose our base space X is the circle S1. If h : Y → X is one of the finite cyclic coverings
hn : S1 → S1 as in Example 1.2 of Lecture 3, then Gal(Y /X ) is a finite cyclic group Z/nZ, h−1(x) consists of n
points, Aut(h−1(x)) is the symmetric group Sn and the image of the inclusion Gal(Y /X ) ,→ Sn is the subgroup
generated by the cyclic permutation (1 2 · · · n). If h : Y → X is the universal covering h∞ : R1 → S1, then
Gal(R1/S1) is the infinite cyclic group Z, Aut(h−1(x)) is the infinite symmetric group S∞ and the image of the
inclusion Gal(R1/S1) ,→ S∞ is the subgroup generated by the shift m 7→ m+ 1 (m ∈ Z).

2. LINKING NUMBERS AND LEGENDRE SYMBOLS

To get a better feeling for working not only with knots, but also with links, and not only at a single prime,
but with multiple primes, the first analogy between knot theory and number theory that we shall study is that
between linking numbers and Legendre symbols. The linking number and Legendre symbol are the first invariants
that come to mind when one considers a 2-component link and a pair of primes respectively, and surprisingly,
there is an analogy between them.

2.1. Linking numbers.

Definition 2.1. Let K and L be disjoint oriented simple closed curves K and L in S3 (i.e. a 2-component link).
The linking number of K and L, denoted by lk(L, K), is defined as follows. Let ΣL be a Seifert surface of L; by
perturbing ΣL suitably, we may assume that K intersects ΣL transversely. Let P1, . . . , Pm be the set of intersection
points of K and ΣL . According as the tangent vector of K at Pi has the same or opposite direction as the normal
vector of ΣL at Pi , assign a number ε(Pi) := 1 or −1 to each Pi , as in Figure 1. The linking number lk(L, K) is
defined by

lk(L, K) :=
m
∑

i=1

ε(Pi).

1.1 Two Ways that Branched out from C.F. Gauss 3

as a tangent vector of K at P has the same or opposite direction to a normal vector
of �L at P , we assign a number ε(P ) := 1 or −1 to each P :

Let P1, . . . ,Pm be the set of intersection points of K and �L. Then the linking
number lk(L,K) is defined by

lk(L,K) :=
m∑

i=1

ε(Pi).

By this definition or by Gauss’ integral formula, we easily see that the symmetric
relation holds:

lk(L,K) = lk(K,L).

Gauss already recognized that the linking number is a topological invariant,
a quantity which is invariant under continuous moves of K and L. Furthermore,
it is remarkable that Gauss’ integral formula has been overlooked and its first gen-
eralization was studied only about 150 years later by E. Witten and M. Kontsevich
etc., again in connection with physics [Kn].

Although there seems no connection between the Legendre symbol and the link-
ing number at first glance, as we shall show in Chap. 4, there is indeed a close
analogy between both notions and in fact they are defined in an exactly analogous
manner. Since Gauss took an interest in knots in his youth [Du, XVII, p. 222], we
may imagine that he already had a sense of the analogy between the Legendre sym-
bol and the linking number. However, there was no mathematical language at his
time to describe this analogy, and knot theory and number theory have grown up

FIGURE 1. Calculation of the linking number.
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Remark 2.2. The linking number can also be computed from a link diagram by the formula

lk(L, K) =
1

2
(# positive crossings−# negative crossings),

from which we see that lk(L, K) is symmetric:

lk(L, K) = lk(K , L).

Example 2.3.

1.1 Two Ways that Branched out from C.F. Gauss 3

as a tangent vector of K at P has the same or opposite direction to a normal vector
of �L at P , we assign a number ε(P ) := 1 or −1 to each P :

Let P1, . . . ,Pm be the set of intersection points of K and �L. Then the linking
number lk(L,K) is defined by

lk(L,K) :=
m∑

i=1

ε(Pi).

By this definition or by Gauss’ integral formula, we easily see that the symmetric
relation holds:

lk(L,K) = lk(K,L).

Gauss already recognized that the linking number is a topological invariant,
a quantity which is invariant under continuous moves of K and L. Furthermore,
it is remarkable that Gauss’ integral formula has been overlooked and its first gen-
eralization was studied only about 150 years later by E. Witten and M. Kontsevich
etc., again in connection with physics [Kn].

Although there seems no connection between the Legendre symbol and the link-
ing number at first glance, as we shall show in Chap. 4, there is indeed a close
analogy between both notions and in fact they are defined in an exactly analogous
manner. Since Gauss took an interest in knots in his youth [Du, XVII, p. 222], we
may imagine that he already had a sense of the analogy between the Legendre sym-
bol and the linking number. However, there was no mathematical language at his
time to describe this analogy, and knot theory and number theory have grown up

FIGURE 2. 2-component link with linking number 2.

We have seen that covering spaces provide a link between topological and arithmetic fundamental groups.
Thus, it is natural to try to formulate the linking number in terms of covering spaces as a first step in establishing
the analogy between linking numbers and Legendre symbols. We use the notation in Example 1.9 of Lecture 3:
for a meridian α of L, let ψ∞ : GL → Z be the surjective homomorphism sending α to 1, let X∞ be the infinite
cyclic covering of X L corresponding to ker(ψ∞) and let τ denote the generator of Gal(X∞/X L) corresponding to
1 ∈ Z. Let ρ∞ : GL � Gal(X∞/X L) be the natural surjection. We shall want to think of this as a monodromy
permutation reprsentation.

Proposition 2.4. ρ∞([K]) = τlk(L,K).

Proof. Recall (Example 1.9 of Lecture 3) that X∞ is constructed by gluing together copies Yi (i ∈ Z) of the space
Y obtained by cutting X L along the Seifert surface ΣL of L, as in Figure 3.

Chapter 4
Linking Numbers and Legendre Symbols

In this chapter, we shall discuss the analogy between the linking number and the
Legendre symbol, based on the analogies between knots and primes in Chap. 3.

4.1 Linking Numbers

Let K ∪L be a 2-component link in S3. The linking number lk(L,K) is described in
terms of the monodromy as follows. Let XL = S3 \ int(VL) be the exterior of L and
let GL = π1(XL) be the knot group of L. For a meridian α of L, let ψ∞ : GL → Z
be the surjective homomorphism sending α to 1. Let X∞ be the infinite cyclic cover
of XL corresponding to Ker(ψ), and let τ denote the generator of Gal(X∞/XL) cor-
responding to 1 ∈ Z (Example 2.12). Let ρ∞ : GL → Gal(X∞/XL) be the natural
homomorphism (monodromy permutation representation).

Proposition 4.1 ρ∞([K]) = τ lk(L,K).

Proof We construct X∞ as in Example 2.12. Namely let Y be the space obtained
by cutting XL along the Seifert surface ΣL of L, and we construct X∞ by gluing
the copies Yi (i ∈ Z) of Y as follows (Fig. 4.1).

Fig. 4.1

Let K̃ be a lift of K in X∞. According as K crosses ΣL with intersection number
+1 (resp. −1), K̃ crosses from Yi to Yi+1 (resp. from Yi+1 to Yi ) for some i. There-
fore, if the starting point y0 of K̃ is in Y0, the terminus of K̃ is in Yl , l = lk(L,K).
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FIGURE 3. Lift K̃ of K to X∞.

Let K̃ be a lift of K to X∞. Then, when K crosses ΣL with intersection number ε = 1 (respectively −1), K̃
crosses from Yi to Yi+1 (respectively from Yi+1 to Yi) for some i since Σ+i is identified with Σ−i+1 in X∞. Therefore,
if the starting point y0 of K̃ is in Y0, then its ending point lies in Yl , l = lk(L, K), that is, ρ∞([K])(y0) ∈ Yl . Since
τ maps Yi onto Yi+1, it follows that ρ∞([K] = τlk(L,K). �

Letψ2 : GL → Z/2Z be the composite ofψ∞ with the surjection Z→ Z/2Z, and let h2 : X2→ X L be the double
covering corresponding to ker(ψ2). Let ρ2 : GL � Gal(X2/X L) be the natural surjection, then by Proposition 2.4,
the image of [K] in Gal(X2/X L) ∼= Z/2Z under ρ2 is given by lk(L, K)mod 2. A similar argument to that in the
proof of Proposition 2.4 tells us that

ρ2([K])(y) = ending point of a lift of K with starting point y .

We conclude that

ρ2([K]) = idX2
⇐⇒ h−1

2 (K) = K1 ∪ K2 (2-component link);

ρ2([K]) = τ ⇐⇒ h−1
2 (K) = K (knot in X2).

We thus obtain the following result:
2
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Proposition 2.5.

h−1
2 (K) =

¨

K1 ∪ K2 if lk(L, K)≡ 0 (mod 2),
K if lk(L, K)≡ 1 (mod 2).

Note that this result has the same form as the decomposition of prime numbers in the ring of Gaussian integers
Z[i] that was established in the previous lecture: a prime p ∈ Z decomposes in Z[i] as

p =







αᾱ if
�

−1
p

�

= 1,

p if
�

−1
p

�

=−1.

We shall see that this result can be extended more generally to the ring of integers Ok of any quadratic field
Q[pq].

Example 2.6.

56 4 Linking Numbers and Legendre Symbols

Hence, we have ρ∞([K])(y0) ∈ Yl . Since τ is the map sending Yi to Yi+1, this
means ρ∞([K]) = τ l . �

Let ψ2 : GL → Z/2Z be the composite map of ψ∞ with the natural homomor-
phism Z → Z/2Z and let h2 : X2 → XL be the double covering of XL correspond-
ing to Ker(ψ2). Let ρ2 : GL → Gal(X2/XL) be the natural homomorphism. By
Proposition 4.1, we have the following.

Corollary 4.2 The image of [K] under the composite map GL
ρ2→ Gal(X2/XL) �

Z/2Z is given by lk(L,K) mod 2:

GL
ρ2→ Gal(X2/XL) � Z/2Z

[K] �→ lk(L,K) mod 2

For y ∈ h−1
2 (x) (x ∈ K), we see that

ρ2
([K])(y) = y.[K]

= the terminus of the lift of K with starting point y.

This implies

ρ2
([K]) = idX2 ⇐⇒ h−1

2 (K) = K1 ∪ K2 (2-component link in X2),

ρ2
([K]) = τ ⇐⇒ h−1

2 (K) = K (knot in X2).

Hence, by Corollary 4.2, we have the following:

h−1
2 (K) =

{
K1 ∪ K2 lk(L,K) ≡ 0 mod 2,

K lk(L,K) ≡ 1 mod 2.
(4.1)

Example 4.3 Let K ∪ L be the following link (Fig. 4.2).

Fig. 4.2

Since lk(L,K) = 2, K is decomposed in X2 as h−1
2 (K) = K1 ∪ K2. In fact,

h−1
2 (K) is drawn in X2 as follows (Fig. 4.3).

FIGURE 4. 2-component link K ∪ L with lk(L, K) = 2.

Let K ∪ L be the two-component link in Figure 4. Since lk(L, K) = 2, K decomposes in the two-sheeted cover
X2 of X L as h−1(K) = K1 ∪ K2. We can see this pictorially as follows. The knot complement X L is homeomorphic
to a solid torus. (Imagine expanding the two linked solid tori in Figure 5 via a homeomorphism to fill up the
ambient space.) The two-sheeted cover X2 is obtained by slicing X L along the disc bounded by L and gluing
together two sliced copies of X L , hence it is also a solid torus, with each of the copies of X L “stretched out” to
form half of it, as in Figure 6. (As a guide, the left intersection point of K with ΣL in Figure 4 lifts to the left
intersection point along the gluing boundary on the left in Figure 6, and the right intersection point along the
gluing boundary on the right.) Thus, h−1(K) is a Hopf link in X2.

FIGURE 5. The complement of a solid torus in S3 is homeomorphic to another solid torus.
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Fig. 4.3

Let K ∪ L be the following link (Fig. 4.4).

Fig. 4.4

Since lk(L,K) = 3, K is lifted to a knot h−1
2 (K) = K in X2. In fact, h−1

2 (K) is
drawn in X2 as follows (Fig. 4.5).

Fig. 4.5

4.2 Legendre Symbols

Let p and q be odd prime numbers. Let X{q} := Spec(Z) \ {q} = Spec(Z[1/q]) and
let G{q} = π1(X{q}) be the prime group of q . Let α be a primitive root mod q and
let ψ2 : G{q} = Z×

q = F×
q × (1 + qZq) → Z/2Z be the surjective homomorphism

defined by ψ2(α) = 1,ψ2(1 + qZq) = 0. Let k be the quadratic extension of Q

FIGURE 6. h−1 is a Hopf link in X2.
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Exercise 2.7. Let K∪L be the two-component link in Figure 7. What knot or link does K lift to in the two-sheeted
cover X2 of X L?

4.2 Legendre Symbols 57

Fig. 4.3

Let K ∪ L be the following link (Fig. 4.4).

Fig. 4.4

Since lk(L,K) = 3, K is lifted to a knot h−1
2 (K) = K in X2. In fact, h−1

2 (K) is
drawn in X2 as follows (Fig. 4.5).

Fig. 4.5

4.2 Legendre Symbols

Let p and q be odd prime numbers. Let X{q} := Spec(Z) \ {q} = Spec(Z[1/q]) and
let G{q} = π1(X{q}) be the prime group of q . Let α be a primitive root mod q and
let ψ2 : G{q} = Z×

q = F×
q × (1 + qZq) → Z/2Z be the surjective homomorphism

defined by ψ2(α) = 1,ψ2(1 + qZq) = 0. Let k be the quadratic extension of Q

FIGURE 7

Exercise 2.8 (Optional). Find a two-component link K ∪ L such that K lifts to a figure eight knot in the two-
sheeted cover X2 of X L .
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