
KNOTS AND PRIMES CHARMAINE SIA LECTURE 3 (JULY 9, 2012)

1. COVERING SPACES

In the previous lecture, we saw how one could obtain a presentation of the knot group from a knot projection.
However, this is not the best way to study the knot group topologically, as the presentation obtained depends on
the choice of knot projection. A more topological way of studying the knot group is provided by covering spaces.

Covering spaces enable one to study fundamental groups via their action on topological spaces, similarly to
how group representations enable one to study abstract groups through their action on vector spaces. As we shall
see, the fundamental group π1(X ) of a space X can be thought of as a Galois (automorphism) group Gal(X̃/X ),
where X̃ is the universal covering space of X . This perspective gives rise to a fundamental analogy between
topological and arithmetic fundamental/Galois groups in arithmetic topology.

1.1. Unramified coverings. We recall the basic definitions and results regarding covering spaces. In what fol-
lows, we shall assume that the base space X is a connected topological manifold. (This will allow us to ignore
technicalities about local path-connectedness and semi-locally simply-connectedness, which one can tell from the
names will cause headaches.)

Definition 1.1. Let X be a space. A continuous map h : Y → X is called an (unramified) covering if for any x ∈ X ,
there is an open neighborhood U of x such that h−1(U) is a disjoint union of open sets in Y , each of which is
mapped homeomorphically onto U by h. (Note that we do not require h−1(Uα) to be non-empty, so h need not be

surjective.) The set of automorphisms Y
∼=−→ Y over X forms a group, called the group of covering transformations

of h : Y → X , denoted by Aut(Y /X ).

Example 1.2 (Coverings of S1).
• hn : S1 → S1, h(z) = zn, where n is a positive integer and we view z as a complex number with |z| = 1.

(Figure 1a shows n= 3.)
• h∞ : R1→ S1, h(t) = (cos2πt, sin 2πt). (Figure 1b.)

In fact, the covering h∞ : R1 → S1 actually covers the coverings hn : S1 → S1, as shown in Figure 1c. As we
shall see later, R1 is the universal covering space of S1, that is, it is a covering of any other (connected) covering
space of S1 (which turn out to be the finite coverings hn).

(A) hn : S1→ S1 (B) h∞ : R1→ S1 (C) hn is a subcovering of h∞

FIGURE 1. Coverings of S1

Example 1.3. We consider a higher-dimensional example. Let Y be the closed orientable surface of genus 11, the
“11-hole torus,” as in Figure 2. This has 5-fold rotational symmetry generated by a rotation of angle 2π/5, and
hence an action of the cyclic group Z/5Z. The quotient space X = Y /(Z/5Z) is a surface of genus 3, obtained
from one of the five subsurfaces by identifying two boundary circles Ci and Ci+1. Thus we have a covering
space M11 → M3, where Mg denotes the closed orientable surface of genus g. This example clearly generalizes
by replacing the 2 holes in each “arm” of M11 by m holes and the 5-fold symmetry by n-fold symmetry to give
covering spaces Mmn+1→ Mm+1.
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something weaker: Every point x ∈ X has a neighborhood U such that U ∩ g(U)
is nonempty for only finitely many g ∈ G . Many symmetry groups have this proper

discontinuity property without satisfying (∗) , for example the group of symmetries

of the familiar tiling of R2 by regular hexagons. The reason why the action of this

group on R2 fails to satisfy (∗) is that there are fixed points: points y for which

there is a nontrivial element g ∈ G with g(y) = y . For example, the vertices of the

hexagons are fixed by the 120 degree rotations about these points, and the midpoints

of edges are fixed by 180 degree rotations. An action without fixed points is called a

free action. Thus for a free action of G on Y , only the identity element of G fixes any

point of Y . This is equivalent to requiring that all the images g(y) of each y ∈ Y are

distinct, or in other words g1(y) = g2(y) only when g1 = g2 , since g1(y) = g2(y)
is equivalent to g−1

1 g2(y) = y . Though condition (∗) implies freeness, the converse

is not always true. An example is the action of Z on S1 in which a generator of Z acts

by rotation through an angle α that is an irrational multiple of 2π . In this case each

orbit Zy is dense in S1 , so condition (∗) cannot hold since it implies that orbits are

discrete subspaces. An exercise at the end of the section is to show that for actions

on Hausdorff spaces, freeness plus proper discontinuity implies condition (∗) . Note

that proper discontinuity is automatic for actions by a finite group.

Example 1.41. Let Y be the closed orientable surface of genus 11, an ‘11 hole torus’ as

shown in the figure. This has a 5 fold rotational symme-

try, generated by a rotation of angle 2π/5. Thus we have

the cyclic group Z5 acting on Y , and the condition (∗) is

obviously satisfied. The quotient space Y/Z5 is a surface

C2

C1

C 3C4

C5

C

p

of genus 3, obtained from one of the five subsurfaces of

Y cut off by the circles C1, ··· , C5 by identifying its two

boundary circles Ci and Ci+1 to form the circle C as

shown. Thus we have a covering space M11→M3 where

Mg denotes the closed orientable surface of genus g .

In particular, we see that π1(M3) contains the ‘larger’

group π1(M11) as a normal subgroup of index 5, with

quotient Z5 . This example obviously generalizes by re-

placing the two holes in each ‘arm’ of M11 by m holes and the 5 fold symmetry by

n fold symmetry. This gives a covering space Mmn+1→Mm+1 . An exercise in §2.2 is

to show by an Euler characteristic argument that if there is a covering space Mg→Mh
then g =mn+ 1 and h =m+ 1 for some m and n .

As a special case of the final statement of the preceding proposition we see that

for a covering space action of a group G on a simply-connected locally path-connected

space Y , the orbit space Y/G has fundamental group isomorphic to G . Under this

isomorphism an element g ∈ G corresponds to a loop in Y/G that is the projection of

FIGURE 2. Covering of the 3-hole torus by the 11-hole torus.

In what follows, we shall restrict our attention to connected covering spaces, since a general covering space is
just a disjoint union of connected ones.

Definition 1.4. A covering h : Y → X is called Galois or normal if for each x ∈ X and each pair of lifts x̃ ′, x̃ ′ of x ,
there is a covering transformation taking x̃ to x̃ ′. For a Galois covering h : Y → X , we call Aut(Y /X ) the Galois
group of Y over X and denote it by Gal(Y /X ).

Intuitively, a Galois covering is one with maximal symmetry, in analogy with Galois extensions, which as
splitting fields of polynomials, can be considered “maximally symmetric.”

Recall that the main theorem of Galois theory gives a bijective correspondence between intermediate field
extensions and subgroups of the Galois group. There is a similar version of the main theorem for coverings,
which relates connected coverings of a given space X and subgroups of π1(X ).

Theorem 1.5. The induced map h∗ : π1(Y, y)→ π1(X , x) is injective, and there is a bijection

{connected coverings h : Y → X }/isom.
∼=−→ {subgroups of π1(X , x)}/conj.

(h : Y → X ) 7→ h∗(π1(Y, y)) (y ∈ h−1(x))

with the property that h : Y → X is a Galois covering if and only if h∗(π1(Y, y)) is a normal subgroup of π1(X , x).
In this case Gal(Y /X )∼= π1(X , x)/h∗(π1(Y, y)).

The covering h : X̃ → X (up to isomorphism over X ) which corresponds to the identity subgroup of π1(X , x)
is called the universal covering of X ; it is a covering space of any other covering space of X . Since the map
h∗ : π1(Y, y)→ π1(X , x) is injective, π1(X̃ ) = 1, i.e. the universal covering is simply-connected, and Gal(X̃/X )∼=
π1(X ). The two most important types of covering spaces we shall consider are the universal covering space and
the cyclic covering spaces.

Example 1.6. We return to Example 1.2, the coverings of S1. We have seen that R1 → S1 is a covering. Since
R1 is simply-connected, this tells us that this is in fact the universal covering of R1 → S1. Indeed, Gal(R1/S1) ∼=
Z ∼= π1(S1), with a generator τ of Gal(R1/S1) acting by a shift of the helix. Moreover, since the only quotient
groups of Z are the finite cyclic groups Z/nZ and we have found coverings hn : S1→ S1 with exactly these Galois
groups, this tells us that these are the only coverings of S1.

Theorem 1.5 tells us that instead of using the Wirtinger presentation, one can also study a knot group GK =
π1(XK) by studying the covering spaces of the knot exterior XK . While the universal covering space of a knot
exterior depends on the particular knot, there is a uniform procedure for constructing the cyclic coverings of a
knot exterior. The idea is to reverse the reasoning in Example 1.3: instead of taking one of several copies of
a manifold with boundary and gluing the boundaries together, we want to slice the base space open and glue
several copies of the resulting space together along the boundaries appropriately.

How can we slice the knot complement in a natural way? If K is the unknot, then there is an obvious way
to slice the knot complement such that the knot figures prominently: we slice along the intersection of the knot
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complement with the disk bounded by the unknot. Is it possible to do this for a general knot K? The answer is in
the affirmative: Seifert showed in 1934 that for every knot or link, there exists an compact oriented connected
surface, called a Seifert surface, whose boundary is that knot or link.

Example 1.7.

FIGURE 3. Möbius band with three half-twists, with boundary a trefoil. Note that the Möbius
band is not considered to be a Seifert surface for the trefoil as it is not orientable.

Exercise 1.8. Figure 4 shows a Seifert surface for a knot, since this surface is compact, oriented and connected.
What knot is this a Seifert surface of? What type of surface is this? (Hint: use Euler characteristic and the
classification theorem for surfaces by genus, orientability and number of boundary components.)

FIGURE 4

Example 1.9 (Infinite cyclic covering). Let K ⊆ S3 be a knot. From a Wirtinger presentation for GK , one sees that
x1, . . . , xn are mutually conjugate. Hence the abelianization GK/[GK , GK] is an infinite cyclic group generated
by the class of a meridian α of K . Let ψ∞ : GK → Z be the surjective homomorphism sending α to 1, and let
h∞ : X∞→ XK be the covering corresponding to ker(ψ∞) in Theorem 1.5. The covering space X∞ is independent
of the choice of α and is called the infinite cyclic covering of XK . It is constructed as follows. Let ΣK be a Seifert
surface of K . Let Y be the space obtained by cutting XK along XK ∩ΣK , and let Σ+ and Σ− be the two surfaces
homeomorphic to XK ∩ΣK obtained from the cut, as in Figure 5.

20 2 Preliminaries—Fundamental Groups and Galois Groups

1 ∈ Z. For each n ∈ N, ψn : GK → Z/nZ be the composite of ψ∞ with the nat-
ural homomorphism Z→ Z/nZ, and let hn : Xn → XK be the covering corre-
sponding to Ker(ψn). The space Xn is the unique subcovering of X∞ such that
Gal(Xn/XK)� Z/nZ. We denote by the same τ for the generator of Gal(Xn/XK)

corresponding to 1 mod nZ. The covering spaces Xn (n ∈N), X∞ are constructed as
follows. First, take a Seifert surface of K , an oriented connected surface �K whose
boundary is K . Let Y be the space obtained by cutting XK along XK ∩ �K . Let
�+,�− be the surfaces, which are homeomorphic to XK ∩�K , as in the following
picture (Fig. 2.13).

Fig. 2.13

Let Y0, . . . , Yn−1 be copies of Y and let Xn be the space obtained from the
disjoint union of all Yi’s by identifying �+0 with �−1 , . . . , and �+n−1 with �−0
(Fig. 2.14).

Fig. 2.14

Define hn :Xn→XK as follows: If y ∈ Yi \ (�+i ∪�−i ), define hn(y) to be the
corresponding point of Y via Yi = Y . If y ∈�+i ∪�−i , define hn(y) to be the corre-
sponding point of �K via �+i ,�−i ⊂�K . By the construction, hn :Xn→XK is an
n-fold cyclic covering. The generating covering transformation τ ∈Gal(Xn/XK) is
then given by the shift sending Yi to Yi+1 (i ∈ Z/nZ). This construction is read-
ily extended to the case n=∞. Namely, taking copies Yi (i ∈ Z) of Y , let X∞K be

FIGURE 5. Copies Σ+ and Σ− of XK ∩ΣK obtained by cutting along XK ∩ΣK .

Let Yi (i ∈ Z) be copies of Y . The space X∞ is obtained from the disjoint union of all the Yi ’s by identifying
Σ+i with Σ−i+1 (i ∈ Z), as in Figure 6, and a generator τ of Gal(X∞/XK) is given by the shift sending Yi to Yi+1
(i ∈ Z).

Example 1.10 (Finite cyclic covering). For each n ∈ N, let ψn : GK → Z/nZ be the composite of ψ∞ with the
surjection Z→ Z/nZ, and let hn : Xn→ XK be the covering corresponding to ker(ψn). Then Gal(Xn/XK)∼= Z/nZ.
The covering spaces Xn are constructed similarly to X∞, except that we now take n copies Y0, . . . , Yn−1 of Y , and
identify Σ+n−1 with Σ−0 instead, as in Figure 7. A generator τ of Gal(Xn/XK) corresponding to 1 mod nZ is given
by the shift sending Yi to Yi+1 (i ∈ Z/nZ).
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the space obtained from the disjoint union of all Yi ’s by identifying �+i with �−i+1
(i ∈ Z) (Fig. 2.15).

Fig. 2.15

The generating covering transformation τ ∈ Gal(X∞K /XK) is given by the shift
sending Yi to Yi+1 (i ∈ Z).

Example 2.13 The Abelian fundamental group of X is the Abelianization of π1(X),
which we denote by πab

1 (X). By the Hurewicz theorem, H1(X)� π ab
1 (X). The cov-

ering space corresponding to the commutator subgroup [π1(X),π1(X)] in Theo-
rem 2.8 is called the maximal Abelian covering of X which we denote by Xab.
Since πab

1 (X)�Gal(Xab/X), we have a canonical isomorphism

H1(X)�Gal
(
Xab/X

)
.

Therefore, Abelian coverings of X are controlled by the homology group H1(X).
This may be regarded as a topological analogue of unramified class field theory
which will be presented in Example 2.44.

Finally, we shall consider ramified coverings. Let M , N be n-manifolds
(n ≥ 2) and let f : N →M be a continuous map. Set SN := {y ∈ N | f is not a
homeomorphism in a neighborhood of y} and SM := f (SN). Let Dk := {x ∈ Rk |
‖x‖ ≤ 1}. Then f :N→M is called a covering ramified over SM if the following
conditions are satisfied:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1) f |N\SN
:N \ SN →M \ SM is a covering.

(2) For any y ∈ SN, there are a neighborhood V of y, a neighborhood U

of f (y), a homeomorphism ϕ : V ≈→D2 ×Dn−2, ψ :U ≈→D2 ×Dn−2

and an integer e= e(y)(> 1) such that (fe × idDn−2) ◦ ϕ =ψ ◦ f.

Here, ge(z) := ze for z ∈ D2 = {z ∈ C | |z| ≤ 1}. The integer e = e(y) is called
the ramification index of y. We call f |N\SN

the covering associated to f . If N is
compact, f |N\SN

is a finite covering. When f |N\SN
is a Galois covering, f is called

a ramified Galois covering.

Example 2.14 For a knot K ⊂ S3, let VK be a tubular neighborhood of K and
XK = S3 \ int(VK) the knot exterior. Let hn : Xn→ XK be the n-fold cyclic cov-
ering defined in Example 2.12. Note that hn|∂Xn : ∂Xn→ ∂XK is an n-fold cyclic
covering of tori and a meridian of ∂Xn is given by nα where α is a meridian on

FIGURE 6. Space X∞ obtained from the disjoint union of the Yi ’s by identifying Σ+i with Σ−i+1 (i ∈ Z)

20 2 Preliminaries—Fundamental Groups and Galois Groups

1 ∈ Z. For each n ∈ N, ψn : GK → Z/nZ be the composite of ψ∞ with the nat-
ural homomorphism Z→ Z/nZ, and let hn : Xn → XK be the covering corre-
sponding to Ker(ψn). The space Xn is the unique subcovering of X∞ such that
Gal(Xn/XK)� Z/nZ. We denote by the same τ for the generator of Gal(Xn/XK)

corresponding to 1 mod nZ. The covering spaces Xn (n ∈N), X∞ are constructed as
follows. First, take a Seifert surface of K , an oriented connected surface �K whose
boundary is K . Let Y be the space obtained by cutting XK along XK ∩ �K . Let
�+,�− be the surfaces, which are homeomorphic to XK ∩�K , as in the following
picture (Fig. 2.13).

Fig. 2.13

Let Y0, . . . , Yn−1 be copies of Y and let Xn be the space obtained from the
disjoint union of all Yi’s by identifying �+0 with �−1 , . . . , and �+n−1 with �−0
(Fig. 2.14).

Fig. 2.14

Define hn :Xn→XK as follows: If y ∈ Yi \ (�+i ∪�−i ), define hn(y) to be the
corresponding point of Y via Yi = Y . If y ∈�+i ∪�−i , define hn(y) to be the corre-
sponding point of �K via �+i ,�−i ⊂�K . By the construction, hn :Xn→XK is an
n-fold cyclic covering. The generating covering transformation τ ∈Gal(Xn/XK) is
then given by the shift sending Yi to Yi+1 (i ∈ Z/nZ). This construction is read-
ily extended to the case n=∞. Namely, taking copies Yi (i ∈ Z) of Y , let X∞K be

FIGURE 7. Space X∞ obtained from the disjoint union of Y0, . . . , Yn−1 by identifying Σ+i with
Σ−i+1 (i ∈ Z/nZ)

1.2. Ramified coverings. Above, we considered (unramified) coverings of the knot exterior XK . However, we
may wish to consider a covering of the entire space S3 extending the above coverings. This is accomplished by
ramified or branched coverings.

Let M and N be n-manifolds (n ≥ 2) and let f : N → M be a continuous map. Define SN := {y ∈ N |
f is not a homeomorphism in a neighborhood of y} and SM := f (SN ).

Definition 1.11. The map f : N → M is called a covering ramified over SM if the following conditions are satisfied:
(1) f |N\SN

: N \ SN → M \ SM is an (unramified) covering, and

(2) for any y ∈ SN , there exist neighborhoods V of y and U of f (y), and homeomorphisms ϕ : V
≈−→

D2×Dn−2 and ψ : U
≈−→ D2×Dn−2, such that (ge× idDn−2)◦ϕ =ψ◦ f for some positive integer e = e(y),

where ge(z) := ze for z ∈ D2 = {z ∈ C | |z| ≤ 1}. (That is, f acts locally like the eth-power map.)

One can “complete” an unramified covering to obtain a ramified covering, as follows.

Example 1.12 (Fox completion). Consider the n-fold cyclic covering hn : Xn → XK from Example 1.10. The
restriction hn|∂ Xn

: ∂ Xn → ∂ XK is an n-fold covering of tori and nα is a meridian of ∂ Xn. Attach V = D2 × S1

to Xn by gluing ∂ V and ∂ Xn in such a way that a meridian of ∂ V coincides with nα. Denote by Mn the closed
3-manifold obtained in this manner.

22 2 Preliminaries—Fundamental Groups and Galois Groups

∂XK . So we attach V = D2 × S1 to Xn gluing ∂V with ∂Xn so that a meridian
∂D2×{∗} coincides with nα. Let Mn be the closed 3-manifold obtained in this way
(Fig. 2.16).

Fig. 2.16

Define fn :Mn→ S3 by fn|Xn := hn and fn|V := fn × idS1 . Then fn is a cov-
ering ramified over K and the associated covering is hn. fn :Mn→ S3 is called the
completion of hn :Xn→XK .

The completion given in Example 2.14 is called the Fox completion and such a
completion can be constructed for any finite covering of a link exterior. In fact, the
Fox completion can be defined for any covering (more generally, for a spread) of
locally connected T1-spaces [Fo2]. Here, let us explain an outline of the construction
for a finite covering of a link exterior. Let M be an orientable connected closed 3-
manifold and let L be a link in M . Let X :=M \ L and let h : Y → X be a given
finite covering. Then there exists a unique covering f : N →M ramified over L

such that the associated covering is h : Y → X. Here, the uniqueness means that

if there are such coverings N , N ′, then there is a homeomorphism N
≈→ N ′ so

that the restriction to Y is the identity map. The construction of f : N → M is
given as follows. Let g be the composite of h with the inclusion X ↪→M : g : Y →
M . To each open neighborhood U of x ∈M , we associate a connected component
y(U) of g−1(U) in a way that y(U1)⊂ y(U2) if U1 ⊂ U2. Let Nx be the set of all
such correspondences y. Let N :=⋃

x∈M Nx and define f : N →M by f (y) =
x if y ∈ Nx , namely, Nx = f−1(x). We give a topology on N so that the basis
of open subsets of N are given by the subsets of the form {y ∈ N | y(U) = W }
where U ranges over all subsets of M and W ranges over all connected components
of f −1(U). If y ∈ Y , we can associate to each open neighborhood U of x = f (y) a
unique connected component y(U) of g−1(U) containing y and so we may regard
Y ⊂ N . Intuitively, regarding x ∈ L as the limit of its open neighborhood U as U

smaller, y ∈ N is defined as the limit of a connected component y(U) of g−1(U).
Let V = D2 ×D1 be a tubular neighborhood of L around x = f (y) ∈ L. Then it
follows from the uniqueness of the Fox completion for the covering h−1(V \L)→
V \L that the condition (2) is satisfied in a neighborhood of y ∈ f−1(L).

FIGURE 8. Fox completion Mn of Xn

Define fn : Mn→ S3 by fn|Xn
:= hn and fn|V := fn × idS1 . Then fn is a covering ramified over K , which we call

the Fox completion of hn : Xn→ XK .
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