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Iwasawa theory

Last time we found the relationship between the class group and the Hilbert class field via
class field theory. The class group measures the failure of unique factorization and is one of
the most important arithmetic invariants of a number field.

Example 1. When trying to solve the Fermat equation

xp + yp = zp, p an odd prime,

we factorize it as ∏
i

(x+ ζipy) = zp

and hope to conclude that x+ζipy is a pth power. In fact, one can show that the ideals (x+ζipy)
are mutually coprime, so by unique factorization of prime ideals, we know that (x+ ζipy) is a
p-power of an ideal a. Now requiring a to be a principal ideal suffices to assume that the class
group H(Q(ζp)) has no element of p-power order. This is the way Kummer found the following
famous criterion.

Theorem 1. If p - #H(Q(ζp)), then xp + yp = zp has no nontrivial integer solutions.

The primes satisfying this condition are called regular primes. Kummer computed the
class group for p < 100 and showed that there are only three irregular primes p = 37, 59, 67 in
this range. This is the best result on Fermat’s last theorem for a long period.

So understanding the p-part of the class group H(Q(ζp)) is of great arithmetic interest.

Example 2. Let us consider the first irregular prime p = 37. The 37-part of the cyclotomic
fields Q(ζ37n) turns out to be Z/37nZ.

Example 3. 691 is also an irregular prime. The 691-part of of the cyclotomic fields Q(ζ691n)
turns out to be (Z/691nZ)2.

You may smell something. We now introduce a general definition and state Iwasawa’s class
number formula in the more general setting.

Definition 1. Let p be an odd prime. We know that Gal(Q(ζp∞)/Q) ∼= Z×
p
∼= F×

p × Zp. We
define Q∞ ⊆ Q(ζp∞) to be the fixed field of F×

p (so Gal(Q∞/Q) ∼= Zp). Let K be a number
field. We define K∞ := KQ∞. Then Gal(K∞/K) ∼= Zp and we call K∞ the cyclotomic
Zp-extension of K. We denote by Kn the finite extension of K corresponding to the group
Zp/p

nZp
∼= Z/pnZ and Hn = H(Kn).

Example 4. For K = Q(ζp), K∞ = Q(ζp∞) is the cyclotomic Zp-extension of K and Kn =
Q(ζpn+1).

Theorem 2 (Iwasawa’s class number formula). There exists constants µ, λ ≥ 0 and ν such
that when n is sufficiently large,

logp#Hn = µpn + λn+ ν.

Example 5. We have µ = 0, λ = ν = 1 for K = Q(ζ37) and µ = 0, λ = 2, ν = 1 for
K = Q(ζ691).
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In view of the analogy between 3-manifolds and number fields, we obtain the following
table.

infinite cyclic covering X∞ → XK Cyclotomic Zp extension K∞/K
homology group H1(Mn) class group Hn := H(Kn)[p]

asymptotic formula on homology groups asymptotic formula on class groups

Our goal today is to sketch the main ingredients of the proof and see how it is amazingly
similar to the case of knots and Alexander polynomials.

Recall that the Alexander polynomial is defined via the action of Λ = Z[Gab
K ] ∼= Z[Gal(X∞/XK)]

on H1(X∞). Since Λ ∼= Z[t±1] and ΛQ = Z[t±1] is a PID, we know that

H1(X∞)⊗Q ∼=
⊕
i

ΛQ/(fi)

as ΛQ-modules. Since the presentation matrix is simply the diagonal matrix (fi), the Alexander
polynomial is nothing but the product

∏
i fi up to Λ×

Q.
What is the arithmetic analogue of Λ acting on Hn = H(Kn)[p]? By class field theory,

Hn
∼= Gal(Ln/Kn), where Ln is the maximal unramified abelian p-extension of Kn. Write

L∞ :=
∪

Ln and
H∞ := lim←−

n

Hn = lim←−
n

Gal(Ln/Kn) = Gal(L∞/K∞).

Since Zp[Gal(Kn/K)] acts on Hn
∼= Gal(Ln/Kn), we know that lim←−n

Zp[Gal(Kn/K)] acts on
H∞.

Definition 2. We define the Iwasawa algebra to be Zp[[Gal(K∞/K)]] := lim←−n
Zp[Gal(Kn/K)].

The following theorem tells us that the Iwasawa algebra has a neat description and thus
plays a similar role as Z[t±1].

Theorem 3. Let γ be the topological generator of Gal(K∞/K) ∼= Zp. Then γ 7→ 1 + T
induces an isomorphism Zp[[Gal(K∞/K)]] ∼= Zp[[T ]] of Zp-algebras.

This is one major reason we want to consider K∞ and H∞: the action of the nice algebra
Zp[[T ]] on the class groups cannot be seen at finite levels. Assuming for simplicity that there
is only one prime of K ramified in K∞ and is totally ramified (this is the case for K = Q(ζp)),
then we can recover Hn from H∞ analogously to the knot situation, which is another major
reason we would like to consider the infinite tower of fields rather than K itself.

Theorem 4. We have an isomorphism Hn
∼= H∞/((1 + T )p

n − 1)H∞.

Morally the Iwasawa algebra Λ̂ = Zp[[T ]] behaves as the power series ring C[[X,Y ]] and
we have the following p-adic version of the Weierstrass preparation theorem.

Theorem 5. Suppose f(T ) ∈ Λ̂ is non zero. Then f(T ) can be uniquely written as

f(T ) = pµg(T )u(T ),

where µ ≥ 0, u(T ) ∈ Λ̂× and g(T ) is a Weierstrass polynomial, namely g(T ) = T λ +
c1T

λ−1 + · · ·+ cλ with ci ≡ 0 (mod p). We call µ and λ the µ-invariant and λ-invariant of
f(T ).

Λ̂ = Zp[[T ]] is not a PID but fortunately the following structure theorem of finitely gener-
ated Λ̂-modules is still valid.
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Theorem 6. Let N be a finitely generated Λ̂-module, then we have an pseudo-isomorphism
(i.e., a homomorphism with finite kernel and cokernel)

N ∼ Λ̂r
⊕
i

Λ̂/(pmi)
⊕
j

Λ̂/(f
ej
j ),

where r,mi, ei ≥ 0 and fi’s are irreducible Weierstrass polynomials. The polynomial

f :=
∏
i

pmi
∏
j

f
ej
j

is called the Iwasawa polynomial of N , well-defined up to Λ̂×. We define the µ-invariant
and λ-invariant of N to be µ =

∑
imi and λ =

∑
j(deg fj)

ej (the sum of individual µ,λ-
invariants).

Using the finiteness of the class group Hn and a Nakayama lemma argument, one can show
that H∞ is a finitely generated torsion Λ̂-module. So the Iwasawa polynomial, µ-invariant and
λ-invariant of H∞ are all well defined due to the previous structure theorem. Now we can
restate Theorem 2 more precisely.

Theorem 2. Let µ and λ be the µ-invariant and λ-invariant of H∞. Then there exists a
constant ν such that when n is sufficiently large,

logp#Hn = µpn + λn+ ν.

Sketch of the Proof. Suppose H∞ ∼ Λ̂/(pmi)
⊕

j Λ̂/(f
ej
j ). By Theorem 4 we need to compute

#N/((1+T )p
n −1)N for N = Λ̂/(pm) or N = Λ̂/(g) for g a Weierstrass polynomial. The first

case contributes pmpn and the second case contributes
∏

ζp
n
=1 |g(ζ − 1)|−1

p . The latter one is
dominated by the leading term since g is a Weierstrass polynomial and becomes ndeg g+ c for
some constant c when n is sufficiently large.

Remark. One can further show that µ = 0 for K any abelian extension of Q. Moreover when
K = Q(ζp), the formula #Hn =

∏
|f(ζ − 1)−1

p | is true for any n ≥ 1, where f(T ) is the
Iwasawa polynomial of H∞.
Remark. The Iwasawa polynomial is harder to compute compared to Alexander polynomial
by hand, since we do not have a nice arithmetic analogue of the Wirtinger representation and
also the ring Zp is much larger than Z. Computer algorithms have been developed for the
computation.
Remark. When is p an irregular prime, i.e., when does H(Q(ζp)) has nontrivial p-part? Mirac-
ulously Kummer proved that it happens exactly when p appears in one of the numerators of
the Riemann zeta values ζ(−1), ζ(−3), ζ(−5), . . .! For example,

ζ(−11) = 691

32760

and
ζ(−31) = 37 · 683 · 305062827

26 · 3 · 5 · 17
shows that 691 and 37 are irregular. The connection between Iwasawa polynomials and Rie-
mann zeta functions can be made rigorously and is the content of the Iwasawa main conjecture.
This conjecture is much deeper and was first proved by Mazur-Wiles in 1984 and reproved by
Rubin in 1994 using Euler system. It not so surprising that Wiles’ proof of Fermat’s last
theorem used ideas from Iwasawa theory in an essential way.
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We end the lectures by the following summary.

infinite cyclic covering X∞ → XK Cyclotomic Zp extension K∞/K
homology group H1(Mn) class group Hn := H(Kn)

asymptotic formula on homology groups asymptotic formula on class groups
Λ = Z[Gab

K ] ∼= Z[t±1] Λ̂ = Zp[[Gal(K∞/K)]] ∼= Zp[[T ]]
H1(Mn) ∼= H1(X∞)/(tn − 1)H1(X∞) Hn

∼= H∞/((1 + T )p
n − 1)H∞

Alexander polynomial Iwasawa polynomial
#H1(Mn) =

∏
|∆(ζ)| #Hn =

∏
|f(ζ − 1)|−1

p

There are many more beautiful stories to tell and discover. Now — it’s your turn!
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