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Ideal class groups

Recall that class field theory classifies finite abelian extensions of a number field K in terms
of the idele class group CK . There is a reciprocity map ρK : CK → Gal(Kab/K) inducing the
isomorphism CK/NL/KCL

∼= Gal(L/K). We found out that Gal(Qab/Q) ∼=
∏

p Z×
p and now

can easily recover the classical Kronecker-Weber theorem.

Theorem 1 (Kronecker-Weber). Each finite abelian extension of Q is a subfield of the cyclo-
tomic field Q(ζN ) for some N .

Proof. Notice that
∏

p Z×
p = Ẑ× and lim←−N

Gal(Q(ζN )/Q) ∼= lim←−(Z/NZ)× ∼= Ẑ×. So Qab is
explictly the union of all cyclotomic fields Q(ζN ).

Remark. This theorem marks the significance of cyclotomic fields for studying abelian number
fields.

This global reciprocity map comprises local reciprocity maps ρKv : K×
v → Gal(Kab

v /Kv)
for each place v of K. When v is a finite place, ρKv is provided by local class field theory and
gives a bijection between finite abelian extensions of Kv and subgroups of K×

v of finite index.
In view of class field theory, the infinite places should play an equal role as the finite places.

It is also amusing to compare the picture at finite places with the two other local fields C and
R, though their extensions are rather simple. For C, it has no nontrivial finite extension and
C× also has no nontrivial subgroup of finite index. For R, it has only one nontrivial finite
extension C/R of order 2 and R× has only one nontrivial subgroup (R×)2 = R>0 of index 2.
Moreover, R>0 is exactly the image of the norm map NC/RC×!

Now we can make sense of ramification of infinite places.

Definition 1. Let L/K be an extension of number fields. Let v be an infinite place. We say
that an infinite place w of v lies above v (denoted by w | v) if w extends v. We say v is
ramified in L if v is real and w is complex for some w lying above v, and unramified in L
otherwise.

Example 1. The infinite place v =∞ of Q is unramified in Q(
√
2) but is ramified in Q(i).

By local class field theory, a finite place v is unramified in L if and only if ρK(O×
v ) = 1 in

Gal(L/K). For the infinite place, the above definition gives an analogous result: let v be an
infinite place, then v is unramified in L if and only if ρK(K×

v ) = 1, since v being unramified
simply means there is no appearance of the nontrivial element in Gal(C/R) at any infinite
place.

We already know that the maximal unramified abelian extension of Q is Q itself. What is
the maximal unramified abelian extension of a general number field K? The question is a bit
more subtle for fields other than Q. We need to distinguish the following two definitions.

Definition 2. Let K be a number field. The maximal abelian extension of K unramified
at all places (denoted by H) is called the Hilbert class field of K. The maximal abelian
extension of K unramified at all finite places (denoted by H+) is called the narrow Hilbert
class field of K. So πab

1 (SpecOK) ∼= Gal(H+/K).

Example 2. For K = Q, we have H = H+ = Q. But for general number fields, the inclusion
K ⊆ H ⊆ H+ may be strict.

1



Knots and Primes Lecture 13 (08/01/2012) Chao Li

In general, the Hilbert class field H is closely related to an intrinsic invariant of the number
field K — its ideal class group. The fractional ideals of OK are of the form

∏
i p

ei
i , where

ei ∈ Z. So the fractional ideals form a group under multiplication. The ideal class group
measures how far these fractional ideals are away from principal ones.

Definition 3. Denote the group of fractional ideals of K by I(K). Denote P (K) the
subgroup of principal fractional ideals (i.e., those generated by an element in K×). We define
the (ideal) class group of K to be the quotient group H(K) := I(K)/P (K). A fundamental
theorem in algebraic number theory asserts that H(K) is always a finite group. The order of
H(K) is called the class number of K.

Remark. By definition, K has class number one if and only if OK is a PID, if and only if OK

is a UFD.

Let ϕ : K× → I(K) be the natural map a 7→ (a). Then P (K) = Imϕ and H(K) = Cokerϕ.
On the other hand, as an abstract group, I(K) ∼=

⊕
p Z. So ϕ is nothing but the valuation map

K× →
⊕

p Z. This valuation map natually extends to the idele group JK →
⊕

p Z and hence
induces a map CK → H(K). This is a surjection and the kernel is exactly

∏
v-∞O×

v

∏
v|∞K×

v .

By class field theory, CK/O×
v

∏
v|∞K×

v
∼= H(K) corresponds to the Hilbert class field H. So

we have the following isomorphism between the class group and the Hilbert class field.

Theorem 2. The reciprocity map induces an isomorphism H(K) ∼= Gal(H/K).

Remark. This important result justifies several terminologies: the “ideles” are a generalization
of “ideals” and the Hilbert “class” field is the field with Galois group canonically isomorphic to
the “class” group. So class field theory is a vast generalization of this correspondence between
abelian number fields and idele class groups.

Similarly, the narrow Hilbert class field theoryH+ corresponds to CK/
∏

v-∞O×
v

∏
v|∞(K×

v )2.

Instead of removing all elements in K×, we should remove those elements lying in (K×
v )2 for

all infinite places. This motivates the following definition.

Definition 4. An element a ∈ K× is called totally positive if σ(a) > 0 for every real
embedding σ : K ↪→ R. Let P+(K) be the subgroup of P (K) generated by all totally positive
elements. We define the narrow class group to be H+(K) := I(K)/P+(K).

Theorem 3. The reciprocity map induces an isomorphism H+(K) ∼= Gal(H+/K).

Notice that by definition Gal(H+/K) = πab
1 (SpecOK). So miraculously we can read off

information about the etale fundamental group by computing the narrow class group!

Example 3. K = Q. Each fractional ideal of Q can be generated by a positive rational
number. So H+(Q) = 1, which corresponds to the familiar fact that the narrow class field
H+ = Q and πab

1 (SpecZ) = 1.

Example 4. K = Q(
√
i) has class number 1 and has no real places. So H(K) = H+(K) = 1

and H = H+ = K.

When K has class number greater than 1, the Hilbert class field may not that easy to find.
The following proposition about ramification in general number fields is quite handy.

Proposition 1. Let K be a number field and L = K( n1
√
a1, . . . , nm

√
am). For a prime p of K,

if ai ̸∈ p and ni ̸∈ p, then p is unramified in L.
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Example 5. K = Q(
√
−5) has class number 2 and has no real places. H(K) = H+(K) is

represented by (1) and (2, 1+
√
−5). The Hilbert class field should be a quadratic extension of

K. We claim that H = H+ = K(i). To prove it, it suffices to show that K(i)/K is unramified
at every prime. By the proposition, we know that only the primes of K above (2) can be

ramified in K(i). Since K(i) = K(
√
5) ↪→ K(ζ5) (cos

2π
5 =

√
5−1
4 ), the proposition also tells us

that only the primes of K over (5) can be ramified in K(i). Therefore K(i)/K is unramified
everywhere.

Exercise. For K = Q(
√
−6), show that H = H+ = K(

√
−3) (hint: use the fact that K has

class number 2).

Remark. Here is a beautiful connection between the solution of the p = x2+ny2 problem and
the Hilbert class field of Q(

√
−n).

p = x2 + y2 p ≡ 1 (mod 4) Q(i) = Q(ζ4)
p = x2 + 5y2 p ≡ 1, 9 (mod 20) Q(

√
−5, i) ↪→ Q(ζ20)

p = x2 + 6y2 p ≡ 1, 7 (mod 24) Q(
√
−6,
√
−3) ↪→ Q(ζ24)

In general, we have a criterion of the shape p ≡ · · · (mod N) if and only if the Hilbert
class field H of Q(

√
−n) is an abelian extension of Q and in that case N is the the smallest

number such that H ↪→ Q(ζN ) (ensured by the Kronecker-Weber theorem). Moreover, the
correct residues modulo N is exactly the subgroup of (Z/NZ)× corresponding to the subfield
H ↪→ Q(ζN ) via Galois theory.

Here we also supply an example for which the narrow class group and the class group are
different.

Example 6. For K = Q(
√
3), H = K and H+ = K(i).

Finally we summarize our analogy between the first homology group and class groups as
follows. The class group is one of the most important arithmetic invariant of a number field.
The analogy suggests that we can study H(K) by studying an infinite tower of extension of
K, in the way we obtained formulas for #H1(Mn) via going to the infinite cyclic covering
X∞ → XK for a knot K. We will talk more about this key idea in Iwasawa theory next time.

homology group ideal class group

H1(M) = πab
1 (M)

H+(K) = πab
1 (SpecOK)

H(K) = πab
1 (SpecOK ∪ {∞-places})
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