
KNOTS AND PRIMES CHARMAINE SIA LECTURE 12 (JULY 30, 2012)

1. THE ALEXANDER POLYNOMIAL IN TERMS OF HOMOLOGY, CONTINUED

Last time, we defined the Alexander ideal E(AK) to be the (principal) ideal generated by the maximal minors of
a presentation matrix for the Alexander module AK , and the Alexander polynomial to be a generator of this ideal.
Here is another way to understand the Alexander polynomial. Recall that we have a Crowell exact sequence

0→ H1(X∞)→ AK
θ2−→ Z[Gab

K ]
εZ[Gab

K ]−−−→ Z→ 0

of Z[Gab
K ]-modules, where θ2 is the homomorphism induced by d g 7→ψ(g)− 1 (g ∈ GK , ψ is the abelianization

map) and εZ[Gab
K ]
(
∑

ag g) :=
∑

ag . We can separate this exact sequence into two short exact sequences, one of
which is

(†) 0→ H1(X∞)→ AK → kerεZ[Gab
K ]
→ 0.

Exercise 1.1. Show that kerεZ[Gab
K ]
∼= Z[Gab

K ] as Z[Gab
K ]-modules.

It follows that kerεZ[Gab
K ]

is a free Z[Gab
K ]-module. We can define a section η of θ2 by setting η(ψ(g)−1) = d g

for some lift g of ψ(g) on a basis for kerεZ[Gab
K ]

, and extending by linearity. Thus the short exact sequence (†)
splits, that is, AK

∼= H1(X∞)⊕Z[Gab
K ] as Z[Gab

K ]-modules.
From now on, we make use of the isomorphism Λ := Z[t, t−1]∼= Z[Gab

K ]. From the direct sum AK
∼= H1(X∞)⊕

Λ, we may assume that QK = (Q1 | 0) by some elementary operations if necessary, that is, Q1 is a square
presentation matrix for the Λ-module H1(X∞). Since this does not change the ideal generated by the maximal
minors of QK , we have the following proposition.

Proposition 1.2. The Alexander ideal and Alexander polynomial are also given by E(H1(X∞)) = 〈det(Q1)〉 and
∆K(t) = det(Q1) respectively.

Moreover, since ΛQ := Λ⊗Z Q=Q[t, t−1] is a PID, we have a ΛQ-isomorphism

H1(X∞)⊗Z Q∼=
s
⊕

i=1

ΛQ/( fi), fi ∈ ΛQ.

Since a generator τ of Gal(X∞/XK) acts on the right hand side as multiplication by t, one thus obtains

∆K(t) = f1 · · · fs = det(t · id−τ | H1(X∞)⊗Z Q)mod Λ×Q.

2. ASYMPTOTIC FORMULAS ON THE ORDERS OF THE FIRST HOMOLOGY GROUPS OF CYCLIC RAMIFIED COVERINGS

The infinite cyclic covering X∞ and its first homology group are our main objects of study; however, the size
of X∞, which allows for its richness of information, also makes it more difficult to study. Taking a leaf from the
study of field extensions, we can attempt to simplify the problem by studying its finite subcoverings Xn instead.
The group H1(Xn) is still an infinite group since it has an infinite subgroup with generator given by the homology
class of ∂ Xn; however, we can remove this subgroup by filling in the tube enclosed by ∂ Xn. This naturally leads
us to consider the Fox completion Mn of Xn. Recall that Mn is constructed from Xn by gluing a tube V = D2 × S1

to Xn along ∂ Vn and ∂ Xn in such a way that a meridian of ∂ V coincides with nα.
We can summarize this discussion in the following diagram:

X∞

��
Xn

��

⊂ Mn

��
XK ⊂ S3

The main result we shall prove is that #H1(Mn) is finite and grows exponentially asymptotically; in fact, we shall
have an explicit formula for the constant involved in terms of the Alexander polynomial of K . We can see an
inkling of this in the following proposition.

Proposition 2.1. H1(Mn)∼= H1(X∞)/(tn − 1)H1(X∞) for n≥ 1.
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Proof. There is an exact sequence

H1(X∞)
tn−1−−→ H1(X∞)→ H1(Xn)→ Z→ 0

that arises from the homology exact sequence associated to a short exact sequence of chain complexes

0→ C∗(X∞)
tn−1−−→ C∗(X∞)→ C∗(Xn)→ 0

(the map (tn − 1)∗ : H0(X∞)→ H0(X∞) is zero). Hence

H1(Xn)∼= H1(X∞)/(t
n − 1)H1(X∞)⊕Z.

Here 1 ∈ Z corresponds to a lift [α̃n] of [αn] to Xn. (Since the image of αn in Gal(Xn/XK) ∼= Z/nZ is 0, αn can
be lifted to Xn.) But H1(Xn)∼= H1(Mn)⊕ 〈[α̃n]〉, so we obtain the assertion. �

Note that by taking n= 1 in Proposition 2.1, we get

H1(X∞)/(t − 1)H1(X∞)∼= H1(M1) = H1(S
3) = 0,

that is, H1(X∞) is a torsion Λ-module.
The following lemma, whose proof we omit, guarantees that the groups H1(Mn) are finite under nice circum-

stances and gives us a way to compute them.

Lemma 2.2. Let N be a finitely generated, torsion Λ-module and suppose that E(N) = (∆). Then, for any f (t) ∈
Z[t], N/ f (t)N is a finite abelian group if and only if ∆(ξ) 6= 0 for all nonzero roots ξ ∈ Q of f (t) = 0. Moreover,
if f (t) can be decomposed as ±

∏s
j=1(t − ξ j), then

�

�N/ f (t)N
�

�=
s
∏

j=1

�

�∆(ξ j)
�

� .

Taking N = H1(Xn), f (t) = tn − 1 and considering the Alexander polynomial as an integer polynomial with
nonzero constant term, we see from Propositions 1.2 and 2.1 and Lemma 2.2 that if the equation ∆K(t) = 0 does
not have a root that is a root of unity, then all the first homology groups H1(Mn) are finite and

(‡) #H1(Mn) =
n−1
∏

j=0

�

�

�∆K

�

ζ j
n

�

�

�

� ,

where ζn is a primitive nth root of unity. In this case, it makes sense to talk about the rate of growth of #H1(Mn).
This turns out to be a function of the Mahler measure of the Alexander polynomial.

Definition 2.3. For a nonconstant polynomial g(t) ∈ R[t], define the Mahler measure m(g) of g(t) by

m(g) := exp

 

1

2π

∫ 2π

0

log
�

�

�g
�

eiθ
�

�

�

� dθ

!

.

A question arises: how can one compute m(g)? A method is given by Jensen’s formula in complex analysis.

Exercise 2.4. Show that if g(t) splits over C as g(t) = c
∏d

i=1(t−ξi), then m(g) = |c|
∏d

i=1 max(
�

�ξi

�

� , 1). (Hint:
Jensen’s formula states that if f is a holomorphic function with no zeroes on the circle |z| = r, zeroes a1, . . . , ak
in the open disk |z|< r (and possibly other zeroes elsewhere), and f (0) 6= 0, then

1

2π

∫ 2π

0

log
�

� f (reiθ )
�

� dθ = log
�

� f (0)
�

�+
k
∑

j=1

(log r − log
�

�ak

�

�).)

We are now ready to state the main theorem of this section.

Theorem 2.5. Assume that there is no root of ∆K(t) = 0 that is a root of unity. Then

lim
n→∞

1

n
log #H1(Mn) = log m(∆K).

That is, #H1(Mn) grows like m(∆K)n.
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Proof. From Equation (‡), we have

lim
n→∞

1

n
log #H1(Mn) = lim

n→∞

1

n

n−1
∏

j=0

�

�

�∆K

�

ζ j
n

�

�

�

�

=

∫ 1

0

log
�

�

�∆K

�

e2πi x
�

�

�

� d x

=
1

2π

∫ 2π

0

log
�

�

�∆K

�

eiθ
�

�

�

� dθ

= log m(∆K).

�

Example 2.6. Let K be the figure eight knot. In one of the exercises, we computed the Alexander polynomial of
the figure eight knot to be

∆K(t) = t2 − 3t + 1=

�

t −
3+
p

5

2

��

t −
3−
p

5

2

�

.

Hence, by Exercise 2.4, we have

lim
n→∞

1

n
log #H1(Mn) = log m(∆K) = log

3+
p

5

2
.
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