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Class field theory

Last time we learned that Zp consists of limits of integers under the “p-adic” distance. Let
us make this more precise.

Definition 1. Let Qp be the fraction field of Zp. The elements of the field Qp are called
p-adic numbers. Every nonzero p-adic number is of the form u ·pk, where k ∈ Z and u ∈ Z×

p .

Definition 2. We define the p-adic valuation

νp : Qp → Z ∪∞

by νp(x) = k if x = u · pk and νp(0) = ∞, and the p-adic metric | · |p : Qp → R by
|x|p = p−νp(x).

One can easily show that | · |p satisfies the axioms for a metric, thus the p-adic distance
d(x, y) := |x− y|p makes sense. This distance matches our previous intuition: the higher the
power of p dividing x− y, the “closer” x and y are.

Remark. Qp is nothing but the completion of Q under the p-adic metric, as R is the com-
pletion of Q under the usual Euclidean metric. But unlike R, the topology of Qp is totally
disconnected: its connected components are one-point sets.

This completion process works in general for any number field.

Definition 3. Let K be a number field and p be a prime ideal of OK lying above p. We
denote by Op the p-adic completion of OK at p and Kp = Frac(Op) its fraction field. Kp is
then a p-adic field, i.e., a finite extension of Qp.

Analogous to Qp, each element of the field Kp can be written as x = u·πn, where π is called
a uniformizer and u ∈ O×

p . The p-adic fields is surprisingly useful in modern number theory.
It turns out that all inequivalent metrics on a number field K are divided into two classes:
either a p-adic metric coming from K ↪→ Kp, or a usual metric coming from an embedding
K ↪→ R or K ↪→ C. So unsurprisingly we decide to give them a name.

Definition 4. Let K be a number field. An prime ideal p of OK is called a finite place
(or non-archimedean place) of K. An embedding K ↪→ R or K ↪→ C is called an infinite
place (or archimedean place) of K. An complex embedding K ↪→ C and its complex
conjugate are viewed as the same complex place.

By definition, the finite places of Q are the prime numbers v = 2, 3, 5, . . . and the only
infinite place (usually denoted by v =∞) of Q is the embedding Q ↪→ R. Just as we study a
space locally by studying the neighborhoods of its points, the fields Kv = R, C or Kp encode
all the local information of the global object — the number field K. For this reason, the
terminology local fields and global fields are commonly used.

Our next goal is to state the main results of class field theory and draw some important
consequences out of it. We will proceed by two steps. The first step is local class field theory,
which classifies all the abelian extensions of a p-adic field. Then binding the local information
at all finite and infinite places appropriately gives the structure of all abelian extensions of a
number field, which is the content of global class field theory.

Recall that SpecZp is constructed as a tubular neighborhood of SpecFp, so we would
expect that they have the same etale fundamental groups.
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Theorem 1. π1(SpecZp) ∼= π1(SpecFp) = Ẑ.

In terms of field theory, this can be rephrased as Gal(Qur
p /Qp) ∼= Gal(Fp/Fp), namely there

is a bijection between unramified finite extensions of Qp and finite extensions of the residue
field Fp. The same thing is true for any p-adic field K, thus at least we understand the

structure of the subfield Kur of the maximal abelian extension Kab of K: Gal(Kur/K) ∼= Ẑ.
Now we are in a position to state the main theorem of local class field theory.

Theorem 2 (Local class field theory). Let K be a p-adic field.

• (Local reciprocity) There exists a unique homomorphism (called the local reciprocity
map) ρK : K× → Gal(Kab/K) satisfying:

1. The following diagram commutes:

K× ρK //

ν

��

Gal(Kab/K)

��
Z // Gal(Kur/K) ∼= Ẑ,

where ν is the valuation map.

2. For any finite abelian extension L/K, ρK induces an isomorphism

K×/NL/KL× ∼= Gal(L/K),

where NL/K : L× → K× is the norm map.

• (Existence) There is a bijection

{subgroups of finite index of K×} ⇐⇒ {finite abelian extensions of K}

given by NL/KL× ← [ L.
Remark. Local class field theory tells us that the finite abelian extensions of K are essentially
classified by the intrinsic group structure of K×! Using the local reciprocity law, we know
that

Gal(Kab/K) ∼= lim←−
L

Gal(L/K) ∼= lim←−
L

K×/NL/KL×.

This is the same as the profinite completion of K× by the existence theorem. Since

K× ∼= O× × πZ ∼= O× × Z,

we are able to conclude that

Corollary 1. Gal(Kab/K) ∼= O× × Ẑ.

Example 1. Gal(Qab
p /Qp) ∼= Z×

p × Ẑ. Moreover, an extension L/Qp is unramified if and only
if ρQp(Z×

p ) = 1 in Gal(L/Qp).
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Example 2. Let p be an odd prime. We can further determine all the quadratic extensions
of Qp. By local class field theory, a quadratic extension corresponds to a subgroup of Q×

p of
index 2. Since such a subgroup must contain (Q×

p )
2, it is equivalent to finding all subgroups

of Q×
p /(Q×

p )
2 of index 2. Notice that

Q×
p
∼= Z×

p × Z ∼= F×
p × (1 + pZp)× Z ∼= Z/(p− 1)× Zp × Z,

where in the second equality the exponential map induces an isomorphism between Zp and
(1 + pZp). We have Q×

p /(Q×
p )

2 ∼= Z/2Z × Z/2Z, which has exactly three subgroups of index
2. So there are exactly three quadratic extensions of Qp.

Exercise. Show that Qp(
√
c), Qp(

√
p) and Qp(

√
cp) are three non-isomorphic quadratic ex-

tensions, where c is any quadratic non-residue modulo p.

Now we intend to bind all local fields associated to a number field K. A natural option
is to take the direct product

∏
v K

×
v , where v runs over all places. But it turns out to be

too huge to deal with arithmetic problems. For example, any element of K only has nonzero
v-valuation at finitely many places v.

Definition 5. We define the idele group JK to be the subgroup of
∏

v K
×
v consisting of

elements (xv) such that xv has nonzero v-adic valuation for only finitely many finite places
v (in other words, all but finitely many xv lie in O×

v ). So K× naturally sits inside JK . We
define the idele class group to be the quotient group CK := JK/K×.

Exercise. Show that CQ ∼= R>0
∏

p Z×
p .

The idele class group CK is the group encoding both local and global information and
turns out to be the right object characterizing the abelian extensions of K.

Theorem 3 (Global class field theory). Let K be a number field.

• (Global reciprocity) There exists a unique continuous homomorphism (called the global
reciprocity map) ρK : CK → Gal(Kab/K) satisfying:

1. The following diagram commutes (compatibility with local reciprocity):

Kv
ρKv //

��

Gal(Kab
v /Kv)

��
CK

ρK // Gal(Kab/K)

2. For any finite abelian extension L/K, ρK induces an isomorphism

CK/NL/K(CL) ∼= Gal(L/K),

where NL/K(x)v =
∏

w above v NLw/Kv
(xw).

• (Existence) There is a bijection

{open subgroups of finite index of CK} ⇐⇒ {finite abelian extensions of K}

given by NL/KCL ← [ L.
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• ρK is surjective and the kernel is the connected component of 1 in CK .

Example 3. The connected component of 1 in CQ is R>0, therefore global class field theory
gives Gal(Qab/Q) ∼=

∏
p Z×

p . Moreover, an extension L/Q is unramified at p if and only

ρK(Z×
p ) = 1 in Gal(L/Q). In particular, we know that the maximal unramified extension of

Q unramified outside p has Galois group Z×
p (the prime group as promised last time).

The name of reciprocity maps hints at a possible relation with quadratic reciprocity. This
is the case and quadratic reciprocity can be easily deduced from global class field theory.
Indeed, generalizing quadratic reciprocity and other higher reciprocity laws is one of the major
motivations for developing class field theory historically. The name of the idele class group
hints at a possible relation with the ideal class group. This is also the case. We will justify
this point and then introduce the basics of Iwasawa theory next time.
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