
KNOTS AND PRIMES CHARMAINE SIA LECTURE 10 (JULY 25, 2012)

1. THE ALEXANDER POLYNOMIAL IN TERMS OF HOMOLOGY

Let K be a knot in S3. We have noted that the first homology group H1(XK) of the knot exterior XK is not useful
in distinguishing knots, since it is always isomorphic to Z. However, the situation is different if we consider the
infinite cyclic covering h∞ : X∞→ XK : since Gal(X∞/XK) ∼= Z, we see that h∞ corresponds to the abelianization
ψ : GK → Gab

K
∼= Z ∼= Gal(X∞/XK), so π1(X∞) ∼= kerψ ∼= [GK , GK] and H1(X∞) ∼= [GK , GK]ab is in general not a

constant group.
We can attempt to understand the group H1(X∞) by considering the long exact sequence in homology associ-

ated to the pair (X∞, h−1
∞ (x0)), where x0 is a fixed basepoint in XK :

· · · → H1(h
−1
∞ (x0))→ H1(X∞)→ H1(X∞, h−1

∞ (x0))→ H0(h
−1
∞ (x0))→ H0(X∞)→ H0(X∞, h−1

∞ (x0)).

• H1(h−1
∞ (x0)): since h−1

∞ (x0) consists of a discrete set of points, H1(h−1
∞ (x0)) = 0.

• H0(h−1
∞ (x0)): H0(h−1

∞ (x0)) is the free abelian group on the set of points h−1
∞ (x0), which are indexed by

elements of Gab
K
∼= Z, so H0(h−1

∞ (x0)) ∼= Z[Gab
K ]
∼= Z[t, t−1] =: Λ. (Here t corresponds to the class of a

meridian α that generates Gab
K .)

• H0(X∞): since X∞ is connected, H0(X∞)∼= Z.
• H0(X∞, h−1

∞ (x0)): by the CW approximation theorem, we can approximate the pair H0(X∞, h−1
∞ (x0)) by a

CW pair (X , A) that is weakly homotopy equivalent and which will thus have the same homology groups.
But H0(X∞, h−1

∞ (x0))⊕Z∼= H0(X , A)⊕Z∼= H0(X/A)∼= Z since X/A is connected, so H0(X∞, h−1
∞ (x0)) = 0.

• H1(X∞, h−1
∞ (x0)): here we use the fact that relative cycles are (equivalence classes of) chains in Cn(X∞)

whose boundary lies in h−1
∞ (x0). For g = [l] ∈ GK , let l̃ denote the lift of l with starting point y0 ∈

h−1
∞ (x0). Then l̃ ∈ C1(X∞, h−1

∞ (x0)) and we have a map

d : GK → H1(X∞, h−1
∞ (x0)), d(g) := [l̃].

For g1 = [l1], g2 = [l2] ∈ GK , let l̃1, l̃2 andàl1 · l2 be the lifts of l1, l2 and l1 · l2 respectively with starting
point y0, and let l̃ ′2 be the lift of l2 whose starting point is the ending point of l1. Then d(g1 g2) =
[àl1 · l2] = [l̃1] + [l̃ ′2] and d(g1) + ψ(g1)d(g2) = [l̃1] + ψ(g1)[l̃2] = [l̃1] + [l̃ ′2]. Hence d(g1 g2) =
d(g1) +ψ(g1)d(g2) in H1(X∞, h−1

∞ (x0)).

Moreover, each of the above are (left) Z[Gab
K ]-modules. This is an appropriate time to pause and introduce

the following definition.

Definition 1.1. Let AK be the quotient module of the (left) free Z[Gab
K ]-module
⊕

g∈GK
Z[Gab

K ]d g on the symbols
d g (g ∈ GK) by the (left) Z[Gab

K ]-submodule generated by elements of the form d(g1 g2)− d g1−ψ(g1)d(g2) for
g1, g2 ∈ GK :

AK :=







⊕

g∈GK

Z[Gab
K ]d g






/〈d(g1 g2)− d g1 −ψ(g1)d(g2) (g1, g2 ∈ GK)〉Z[Gab

K ]
.

By definition, the map d : G → AK defined by the correspondence g 7→ d g is a ψ-differential, namely for g1,
g2 ∈ G, one has

d(g1 g2) = d(g1) +ψ(g1)d(g2),
and AK is universal for this property in the sense that for any (left) Z[Gab

K ]-module A and any ψ-differential
∂ : G→ A, there exists a unique Z[Gab

K ]-homomorphism ϕ : AK → A such that ϕ ◦ d = ∂ .

Fact 1.2. There is an exact sequence of (left) Z[Gab
K ]-modules

0→ [GK , GK]
ab θ1−→ AK

θ2−→ Z[Gab
K ]

εZ[Gab
K ]−−−→ Z→ 0

called the Crowell exact sequence, where θ1 is the homomorphism induced by n 7→ dn (n ∈ [GK , GK]), θ2 is the
homomorphism induced by d g 7→ψ(g)− 1 (g ∈ GK) and εZ[Gab

K ]
(
∑

ag g) :=
∑

ag .

One can check that the isomorphisms above commute with the maps in the Crowell exact sequence and the
homology exact sequence, and hence that the Crowell exact sequence is simply the homology exact sequence in
another guise.
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Definition 1.3. The Z[Gab
K ]-module module AK is called the Alexander module of the knot K .

Using the Fox free differential calculus, one can give an explicit resolution for the Alexander module AK .

Definition 1.4. Let F be the free group on the generators x1, x2, . . . , xm. The Fox free derivative ∂

∂xi

: Z[F]→ Z[F]
is defined by the following axioms:

•
∂

∂ x i
(u+ v) =

∂

∂ x i
u+

∂

∂ x i
v for any u, v ∈ Z[F],

•
∂

∂ x i
e = 0,

•
∂

∂ x i
x j = ∂i j where ∂i j is the Kronecker delta,

•
∂

∂ x i
(uv) =

∂

∂ x i
u+ u

∂

∂ x i
v for any u, v ∈ F .

One can check that this system of axioms is consistent. As a consequence of the axioms, we also have the
following formula for inverses:

∂

∂ x i
u−1 =−u−1 ∂

∂ x i
u for any u ∈ F.

Theorem 1.5. Let GK = 〈x1, . . . , xm | R1, R2, . . . , Rm−1〉 be a presentation of the knot group GK (e.g. a Wirtinger
presentation). Let F be the free group on x1, . . . , xm, and let π : F → GK be the natural homomorphism. (We shall
also denote by π the induced map of group rings Z[F]→ Z[GK].) The Alexander module AK has a free resolution
over Z[Gab

K ]:

Z[Gab
K ]

m−1 Q
−→ Z[Gab

K ]
m→ AK → 0.

Here the (m− 1)×m presentation matrix QK , called the Alexander matrix of K, is given by

QK =

�

(ψ ◦π)
�

∂ Ri

∂ x j

��

i j

∈ Z[Gab
K ]
(m−1)×m ∼= Λ(m−1)×m.

Note that the Alexander matrix depends on a choice of presentation for GK !

Example 1.6 (Alexander matrix for the trefoil). Let us compute Alexander matrices for the trefoil using two
different presentations of the knot group: 〈a, b | aba− bab〉 and 〈x , y | x3 − y2〉.

• 〈a, b | aba− bab〉:
∂

∂ a
= 1+ ab− b,

∂

∂ b
=−1− ba+ a,

so the associated Alexander matrix is [ψ(1+ ab− b) ψ(−1− ba− a)] = [1+ t2 − t − 1− t2 + t].
(Abelianizing sends both a and b to t.)

• 〈x , y | x3 − y2〉:
∂

∂ x
= 1+ x + x2,

∂

∂ y
=−1− y,

so the associated Alexander matrix is [ψ(1+ x+ x2) ψ(−1− y)] = [1+ t2+ t4 −1− t3]. (Here one
needs to be careful: abelianizing sends x to t3 and y to t2!)

For a commutative ring R and a finitely presented R-module M , let

Rs Q
−→ Rr → M → 0

be a free resolution of M over R with presentation matrix Q, and define E(M) to be the ideal of R generated by
the maximal minors of Q.

Definition 1.7. The Alexander ideal is the ideal E(AK) of Z[Gab
K ]
∼= Λ generated by the (m− 1)-minors of QK .

Note that the Alexander ideal can be defined because Gab
K is abelian by definition. It is a theorem of Crowell

and Fox that the Alexander ideal is independent of a choice of a free resolution for AK , unlike the Alexander
matrix. Moreover, Alexander proved that the Alexander ideal is always a principal ideal (although Z[t, t−1] is
not a PID!). Thus a generator of the Alexander ideal is defined up to multiplication by a unit of Λ, namely ±tn

for some integer n.
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Example 1.8 (Alexander ideal for the trefoil). It is clear from the first part of Example 1.6 that the Alexander
ideal of the trefoil is 〈1− t + t2〉. We can also see this from the second part of Example 1.6 by the calculations
1+ t2 + t4 = (1− t + t2)(1+ t + t2), (1+ t3) = (1− t + t2)(1+ t).

Definition 1.9. The Alexander polynomial ∆K(t) of a knot K is a generator of E(AK) (and hence is defined up to
multiplication by ±tn for some integer n).

Example 1.10. The Alexander polynomial of the trefoil is ∆K(t) = 1 − t + t2. Note that this matches our
computation using skein relations up to a factor of t.

Exercise 1.11. Compute the Alexander polynomial of the figure eight knot, using both skein relations and the
Fox free derivative.

Working through the definition of the Alexander ideal using a Wirtinger presentation for K , one can show that
the effect of taking the mirror image of a knot K is to make the substitution t↔ t−1. On the other hand, by the
theorem of Crowell and Fox and the definition in terms of the first homology group of X∞, the Alexander ideal
does not depend on the chirality of K . Hence we conclude that the Alexander polynomial is symmetric, that is,
up to multiplication by tn, it has the form ar t−r + · · ·+ a1 t−1 + a0 + a1 t + · · ·+ ar t r .
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