
KNOTS AND PRIMES CHARMAINE SIA LECTURE 1 (JULY 2, 2012)

1. ANALOGY BETWEEN KNOTS AND PRIMES

Knots and primes are the basic objects of study in knot theory and number theory respectively. Surprisingly,
these two seemingly unrelated concepts have a deep analogy discovered by Barry Mazur in the 1960s while
studying the Alexander polynomial, which initiated the study of what is now known as arithmetic topology.
As motivation for this analogy, we first consider the correspondence between commutative rings and spaces in
algebraic geometry.

1.1. Commutative rings and spaces.

Example 1.1. Consider the polynomial ring C[t]: it has transcendence degree one over the field C, which
we think of as one degree of freedom. We represent it by a complex line, denoted by SpecC[t]. Hilbert’s
Nullstellensatz tells us that there is a bijective correspondence between elements a ∈ C and maximal ideals
(t − a) of functions that vanish at a. Since every nonzero prime ideal of C[t] is a maximal ideal, this justifies us
labeling the complex line as SpecC[t], the set of prime ideals of the ring C[t]. (The zero ideal corresponds to
the generic point, which one should think of as the entire line.) The inclusion of the point representing (t − a)
into the complex line corresponds to the quotient map C[t]�C[t]/(t − a)∼= C in the opposite direction and is
denoted by a map SpecC ,→ SpecC[t].

C[t]

C[t]/(t − a)∼= C

SpecC[t]
(t − a)

SpecC[t]/(t − a)∼= SpecC

FIGURE 1. Inclusion SpecC ,→ SpecC[t]

Example 1.2. There is a similar story for the ring of integers Z. Above, we used transcendence degree as a
measure of dimension; however, we could equally well have used Krull dimension, that is, the supremum of all
integers n such that there is a strict chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn, as the Krull dimension of a domain
finitely generated over a field is equal to its transcendence degree. Krull dimension turns out to be the “correct”
notion of dimension in algebraic geometry, as it is defined for all commutative rings. The Krull dimension of Z is
one, so once again we represent it by a line, denoted by SpecZ; its points are prime ideals (p) where p is a prime
number. As before, the inclusion of the point representing (p) into the complex line corresponds to the quotient
map Z� Z/(p)∼= Fp in the opposite direction and is denoted by a map SpecFp ,→ SpecZ.

Z

Z/(p)∼= Fp

SpecZ
(2) (3) (5) · · · (p)

SpecZ/(p)∼= SpecFp

FIGURE 2. Inclusion SpecFp ,→ SpecZ

1.2. Knots and primes. The key idea behind the analogy between knots and primes is to use a different notion
of dimension, namely étale cohomological dimension. The space SpecFp has étale homotopy groups

πét
1 (SpecFp) = Gal(Fp/Fp) = Ẑ, πét

i (SpecFp) = 0 (i ≥ 2)

(here Ẑ is the profinite completion of Z). Since the circle S1 has homotopy groups

π1(S
1) = Gal(R/S1) = Z, πi(S

1) = 0 (i ≥ 2),

this suggests that SpecFp should be regarded as an arithmetic analogue of S1. (It is a classical theorem in
algebraic topology that a space with only one nonzero homotopy group, called an Eilenberg-MacLane space, is
unique up to homotopy equivalence.) On the other hand, the space SpecZ (or in fact SpecOk, where Ok is the
ring of integers of a number field k) satisfies Artin-Verdier duality, which one can think of as some sort of Poincaré
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duality for 3-manifolds, and πét
1 (SpecZ) = 1. Hence it makes sense to regard SpecZ as an analogue of R3. (The

reader may wonder why we regard SpecZ as an analogue of R3 instead of S3. It turns out that the correct
analogue of S3 is SpecZ∪ {∞} (the prime at infinity), just as S3 = R3 ∪ {∞}.) Thus, the embedding

SpecFp ,→ SpecZ

is viewed as the analogue of an embedding
S1 ,→ R3.

This yields an analogy between knots and primes.
This analogy can be extended to many concepts in knot theory and number theory. We list some of these

analogies in Table 1.

KNOTS PRIMES

Fundamental/Galois groups
π1(S1) = Gal(R/S1) π1(Spec(Fq)) = Gal(Fq/Fq), q = pn

= 〈[l]〉 = 〈[σ]〉
= Z = Ẑ

Circle S1 = K(Z, 1) Finite field Spec(Fq) = K(Ẑ, 1)
Loop l Frobenius automorphism σ

Universal covering R Separable closure Fq

Cyclic covering R/nZ Cyclic extension Fqn/Fq

Manifolds Spec of a ring
V ' S1 Spec(Op)' Spec(Fq)
V \ S1 ' ∂ V Spec(Op) \ Spec(Fq)' Spec(kp)
(' denotes homotopy equivalence) (' denotes étale homotopy equivalence; Op is a

p-adic integer ring whose residue field is Fq and
whose quotient field is kp)

Tubular neighborhood V p-adic integer ring Spec(Op)
Boundary ∂ V p-adic field Spec(kp)
3-manifold M Number ring Spec(Ok)
Knot S1 ,→ R3 ∪ {∞}= S3 Rational prime Spec(Fp) ,→ Spec(Z)∪ {∞}
Any connected oriented 3-manifold is a finite Any number field is a finite extension of Q ramified
covering of S3 branched along a link over a finite set of primes
(Alexander’s theorem)

Knot group Prime group
GK = π1(M \ K) G{p} = πét

1 (Spec(Ok \ {p}))
GK
∼= GL ⇐⇒ K ∼ L for prime knots K , L G{(p)} ∼= G{(q)}⇐⇒ p = q for primes p, q

Linking number Legendre symbol

Linking number lk(L, K) Legendre symbol ( q∗

p
), q∗ := (−1)

q−1
2 q

Symmetry of linking number lk(L, K) = lk(K , L) Quadratic reciprocity law ( q
p
) = ( p

q
) (p, q ≡ 1 mod 4)

Alexander-Fox theory Iwasawa theory
Infinite cyclic covering X∞→ XK Cyclotomic Zp-extension k∞/k
Gal(X∞/XK) = 〈τ〉 ∼= Z Gal(k∞/k) = 〈γ〉 ∼= Zp

Knot module H1(X∞) Iwasawa module H∞
Alexander polynomial det(t · id | H1(X∞)⊗Z Q) Iwasawa polynomial det(T · id− (γ− 1) | H∞ ⊗Zp

Qp)
TABLE 1. Analogies between knots and primes

2. PRELIMINARIES ON KNOT THEORY

Definition 2.1. A knot is the image of an embedding of S1 into S3 (or more generally, into an orientable con-
nected closed 3-manifold M). A knot type is the equivalence class of embeddings that can be obtained from a
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particular one under ambient isotopy. (However, following common parlance, we shall often refer to a knot type
simply as a knot when there is no danger of confusion.)

We shall be concerned only with tame knots, that is, knots which possess a tubular neighborhood. A knot is
tame if and only if it is ambient isotopic to a piecewise-linear knot, or equivalently, to a smooth knot.

2.1. Knot diagrams. Let K be a knot. By removing a point in S3 not contained in K (call it∞), we may assume
that K ⊂ R3.

Definition 2.2. A projection of K onto a plane in R3 is called regular if it has only a finite number of multiple
points, all of which are double points.

Clearly, any knot projection can be transformed into a regular projection by a slight perturbation of the knot.
All the knot projections we consider will be regular, with the over- and undercrossings marked.

Definition 2.3. The crossing number of a knot (type) is the least number of crossings in any projection of a knot
of that type.

Definition 2.4. Given two knots J and K , the connected sum or composition of J and K , denoted J#K , is the knot
obtained by removing a small arc from each knot projection and connecting the endpoints by two new arcs, as in
Figure 3.

FIGURE 3. Connected sum of two knots

Note that in general, the connected sum of unoriented knots is not well-defined—more than one knot may
arise as the connected sum of two unoriented knots. However, the connected sum is well-defined if we put an
orientation on each knot and insist that the orientation of the connected sum matches the orientation of each of
the factor knots. A knot is called prime if it cannot be written as the connected sum of two non-trivial knots, and
composite otherwise.

Example 2.5.

(A) 01

Unknot

(B) 31

(3,2)-torus knot
Trefoil

(C) 41

Figure eight

(D) 51

(5, 2)-torus knot
(E) 52

FIGURE 4. Prime knots (i.e., knots that cannot be expressed as the connected sum of two knots,
neither of which is the trivial knot) with crossing number at most 5. The knots are labelled using
Alexander-Briggs notation: the regularly-sized number indicates the crossing number, while the
subscript indicates the order of that knot among all knots with that crossing number in the
Rolfson classification.
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Remark 2.6. A knot is called alternating if it has a projection in which the crossings alternate between over- and
undercrossings as one travels along the knot. All prime knots with crossing number less than 8 are alternating
(there are three non-alternating knots with crossing number 8); moreover, it is a theorem of Thistlewaite, Kauff-
man and Murasugi (one of the Tait conjectures) that any minimal crossing projection of an alternating knot is an
alternating projection. This provides a useful way to check if one has drawn a projection of a low-crossing knot
correctly.

Two knot projections represent the same knot if and only if, up to planar isotopy, one can be obtained from
the other via a sequence of Reidemeister moves, moves repesenting ambient isotopies that change the relations
between the crossings. The Reidemeister moves are shown in Figure 5.

(A) Type I
Twist/untwist

(B) Type II
Move over/under a strand

(C) Type III
Move over/under a crossing

FIGURE 5. Reidemeister moves

2.2. The knot group. Let K be a knot. We fix the following notation and terminology.

Definition 2.7. Denote by VK a tubular neighborhood of K . The complement XK := S3\int(VK) of an open tubular
neighborhood int(VK) in S3 is called the knot exterior. (Note that XK is a compact 3-manifold with boundary a
torus.) A meridian of K is a closed (oriented) curve on ∂ XK which is the boundary of a disk D2 in VK . A longitude
of K is a closed curve on ∂ XK which intersects with a meridian at one point and is null-homologous in XK . (See
Figure 6.)

2.1 The Case of Topological Spaces 13

XK := S3 \ int(VK) of an open tubular neighborhood int(VK) in S3 is called the knot
exterior. It is a compact 3-manifold with a boundary being a 2-dimensional torus.
A meridian of K is a closed (oriented) curve which is the boundary of a disk D2

in VK . A longitude of K is a closed curve on ∂XK which intersects with a meridian
at one point and is null-homologous in XK (Fig. 2.5).

Fig. 2.5

The fundamental group π1(XK)= π1(S
3 \K) is called the knot group of K and

is denoted by GK . Firstly, let us explain how we can obtain a presentation of GK .
We may assume K ⊂ R3. A projection of a knot K onto a plane in R3 is called
regular if there are only finitely many multiple points which are all double points
and no vertex of K is mapped onto a double point. There are sufficiently many
regular projections of a knot. We can draw a picture of a regular projection of a knot
in the way that at each double point the overcrossing line is marked. So a knot can
be reconstructed from its regular projection. Now let us explain how we can get a
presentation of GK from a regular projection of K , by taking a trefoil for K as an
illustration.

(0) First, give a regular projection of a knot K (Fig. 2.6).

Fig. 2.6

(1) Give an orientation to K and divide K into arcs c1, . . . , cn so that ci (1≤ i ≤
n− 1) is connected to ci+1 at a double point and cn is connected to c1 (Fig. 2.7).

FIGURE 6. Tubular neighborhood of a knot with a meridian α and a longitude β .

The most obvious invariant of a knot K is the knot group GK , which is defined to be the fundamental group of
the knot exterior π1(XK) = π1(S3 \ K). Given a regular presentation of a knot, one can obtain a presentation of
the knot group, known as a Wirtinger presentation.

Theorem 2.8. Given a regular presentation of a knot K, give the knot an orientation and divide it into arcs c1, c2,
. . . , cn such that ci is connected to ci+1 at a double point (with the convention that cn+1 = c1), as in Figure 7. The
knot group GK has a Wirtinger presentation

GK = 〈x1, . . . , xn | R1, . . . , Rn〉,

where the relation Ri has the form x i xk x−1
i+1 x−1

k or x i x
−1
k x−1

i+1 xk depending on whether the crossing at a double point
is a positive or negative crossing, as specified by Figure 8.
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Fig. 2.7

(2) Take a base point b above K (for example b=∞) and let xi be a loop coming
down from b, going once around under ci from the right to the left, and returning
to b (Fig. 2.8).

Fig. 2.8

(3) In general, one has the following two ways of crossing among ci ’s at each
double point. From the former case, one derives the relation Ri = xix

−1
k x−1

i+1xk = 1,

and from the latter case one derives the relation Ri = xixkx
−1
i+1x

−1
k = 1 (Fig. 2.9).

Fig. 2.9

FIGURE 7. Oriented knot K , divided into arcs c1, c2, . . . , cn.
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Fig. 2.7

(2) Take a base point b above K (for example b=∞) and let xi be a loop coming
down from b, going once around under ci from the right to the left, and returning
to b (Fig. 2.8).

Fig. 2.8

(3) In general, one has the following two ways of crossing among ci ’s at each
double point. From the former case, one derives the relation Ri = xix

−1
k x−1

i+1xk = 1,

and from the latter case one derives the relation Ri = xixkx
−1
i+1x

−1
k = 1 (Fig. 2.9).

Fig. 2.9 (A) Positive crossing
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Fig. 2.7

(2) Take a base point b above K (for example b=∞) and let xi be a loop coming
down from b, going once around under ci from the right to the left, and returning
to b (Fig. 2.8).

Fig. 2.8

(3) In general, one has the following two ways of crossing among ci ’s at each
double point. From the former case, one derives the relation Ri = xix

−1
k x−1

i+1xk = 1,

and from the latter case one derives the relation Ri = xixkx
−1
i+1x

−1
k = 1 (Fig. 2.9).

Fig. 2.9(B) Negative crossing

FIGURE 8. Relation in knot group depending on the type of crossing
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Fig. 2.7

(2) Take a base point b above K (for example b=∞) and let xi be a loop coming
down from b, going once around under ci from the right to the left, and returning
to b (Fig. 2.8).

Fig. 2.8

(3) In general, one has the following two ways of crossing among ci ’s at each
double point. From the former case, one derives the relation Ri = xix

−1
k x−1

i+1xk = 1,

and from the latter case one derives the relation Ri = xixkx
−1
i+1x

−1
k = 1 (Fig. 2.9).

Fig. 2.9

FIGURE 9. Loop x i passing through the point at infinity and going once under ci from the right
to the left.

Proof. For 1 ≤ i ≤ n, let x i be a loop passing through∞ and which goes once under ci from the right to the left,
as shown in Figure 9.

It is clear that the loops x i generate the group GK . Suppose that the arcs ci and ci+1 are separated by ck at
the i-th crossing. If the crossing is positive (respectively negative), one can concatenate the loops x i , xk, x−1

i+1,
x−1

k (respectively x i , x−1
k , x−1

i+1, xk) to obtain a null-homologous loop. Hence the relations Ri , 1 ≤ i ≤ n, hold in
GK . (Note that the relation Ri implies any cyclic permutation of it by conjugation.) Moreover, the generators x i
and relations Ri form a presentation for GK : by considering the projection of a loop ` in XK onto the plane of the
knot projection, one can write ` in terms of the x i ’s. When a homotopy is performed on `, the word representing
` changes only when the projection of ` passes through the crossings of K . �

Fact 2.9. One of the relations among the Ri is redundant, that is, we can derive any one of the relations Ri from
the others.
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Corollary 2.10. GK has a presentation with deficiency 1, that is, a presentation where the number of relations is
one fewer than the number of generators.

Definition 2.11. A r-component link L is the image of an embedding of a disjoint union of r copies of S1 into
S3 (or more generally, into an orientable connected closed 3-manifold M). Thus one may write L = K1 ∪ · · · ∪ Kr
where the Ki are mutually disjoint knots. (As before, we shall often refer to an equivalence class of links under
ambient isotopy simply as a link.)

The link group GL is defined to be π1(S3 \ L). Similarly to the case of knots, GL has a Wirtinger presentation of
deficiency 1. In general, for a knot K or link L in an orientable connected closed 3-manifold M , the knot group
GK(M) := π1(M \ K) or link group GL(M) := π1(M \ L) also has deficiency 1, but may not have a Wirtinger
presentation.

Example 2.12 (Knot group of trefoil). Consider the trefoil knot from Figure 7. Its knot group has a Wirtinger
presentation 〈x1, x2, x3 | x2 x1 x−1

3 x−1
1 , x3 x2 x−1

1 x−1
2 , x1 x3 x−1

2 x−1
3 〉. The product of the three relations in reverse

order is 1, hence any one of the relations is redundant. From the second relation, we obtain x3 = x2 x1 x−1
2 ,

and substituting this into the first relation, we see that the knot group of the trefoil is the braid group B3 =
〈x1, x2|x1 x2 x1 = x2 x1 x2〉.

Exercise 2.13. Show that the above knot group is isomorphic to the group 〈a, b | a3 = b2〉. (In general, a
(p, q)-torus knot has fundamental group 〈a, b | ap = bq〉, but this is harder to show.)

Exercise 2.14. Show that two unlinked circles (Figure 10a) and the Hopf link (Figure 10b) are not equivalent.

(A) Two unlinked circles (B) Hopf link

FIGURE 10. Two non-equivalent links

Remark 2.15. A knot is said to be chiral if it is not equivalent to its mirror image, and achiral or amphichiral
otherwise. Clearly, the knot group cannot detect whether a knot is chiral. The other knot invariant that we shall
introduce in this tutorial, the Alexander polynomial, is also unable to detect chirality since it is defined in terms
of a homology group. However, other knot invariants such as the Jones polynomial are able to detect the chirality
of some knots.
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