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0. Introduction

A fundamental problem in knot theory is to determine whether two knots—or more generally, two links—
are equivalent (up to ambient isotopy). A standard approach to this type of topological problem is to find
suitable algebraic invariants of knots or links, e.g., the knot group and Alexander polynomial which we have
seen in lecture. The Jones polynomial is another one of these invariants, a Laurent polynomial with integer
coefficients like the Alexander polynomial, which can be assigned to any oriented link [5]. The first goal of
the paper will be to define and understand the Jones polynomial; we do this in §2.

There is also a generalisation (a “categorification”) of the Jones polynomial known as Khovanov homology.
Here, instead of assigning a polynomial, we assign a complex of graded vector spaces to oriented links. It
turns out that the homology of this complex is a link invariant, and that the graded Euler characteristic—an
invariant of the homology, so also a link invariant—is in fact the Jones polynomial, up to a normalising factor
[2]. The second goal of this paper will be to define and understand Khovanov homology and its relationship
to the Jones polynomial; we do this in §3.

We perhaps should mention, finally, that it seems (cf. [7, 8]) that the Jones polynomial and Khovanov
homology have great physical significance as well, which further motivates their study. Unfortunately though,
this won’t be discussed in this paper.

1. Basic notions

Before addressing the main topics of the paper in §§2–3, we include some notes here reviewing the basic
definitions and facts from knot theory that will be used later on. Some of the notation and terminology is
nonstandard, but seems to be more explicit than the standard abuse of notation and terminology; since the
goal of this section of the paper is to clarify the foundational concepts of knot theory, being more explicit
should hopefully be helpful and justified here. Proofs will not be included here, but can be found in, e.g.,
[3, 4, 1].

Convention 1.1. We fix throughout an (arbitrary) orientation on R3.

Definition 1.2. A link L (of n ∈ N components) is an embedding L :
∐n
i=1 S

1 ↪−→ R3 of n disjoint circles
into n disjoint closed curves γi ⊂ R3. A knot K is simply a link of 1 component, that is, an embedding
S1 ↪−→ R3. An orientation O on L is a choice of orientation on

∐n
i=1 S

1, or equivalently a choice for each
1 ≤ i ≤ n of one of the two orientations on the curve γi. A pair (L,O) of a link L and an orientation O

on L is called an oriented link. We say a link L is tame if L has a tubular neighbourhood, i.e., there is an

embedding L̃ :
∐n
i=1 S

1 × D2 ↪−→ R3 of n disjoint solid tori into 3-space which extends L, in the obvious
sense.

Convention 1.3. For the remainder of this paper, all links will be assumed to be tame.

Definition 1.4. Let L,L′ be links. An ambient isotopy from L to L′ consists of a family of homeomorphisms
{ht}0≤t≤1 of R3 satisfying the following conditions:

(1) the map h : R3 × [0, 1] −→ R3 sending (x, t) 7−→ ht(x) is continuous,
(2) h0 = idR3 , and
(3) h1 ◦ L = L′.
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Let O,O′ be orientations on L,L′, respectively. An ambient isotopy (of oriented links) from (L,O) to (L′,O′)
consists of an ambient isotopy {ht}0≤t≤1 from L to L′ such that the orientation Oind induced on L′ by O

and h1 agrees with O′.
The above clearly gives us an equivalence relation on links (resp. oriented links): L (resp. (L,O)) and

L′ (resp. (L′,O′)) are ambient isotopic, or simply equivalent, if and only if there exists an ambient isotopy
from L (resp. (L,O)) to L′ (resp. (L′,O′)). The equivalence class of L (resp. (L,O)) under ambient isotopy
is called the link type (resp. oriented link type) of L (resp. (L,O)), and is denoted [L] (resp. [(L,O)]).

Definition 1.5. Let L :
∐n
i=1 S

1 ↪−→ R3 be a link. A projection π : im(L) −→ R2 of L is a map induced by
a projection of R3 onto a plane Π ⊂ R3. Let X := {x ∈ R2 | |π−1(x)| > 1} be the set of crossings of π. We
say π is a regular projection if

(1) X is finite, and
(2) for each x ∈ X, |π−1(x)| = 2, and the two curve segments in im(π) intersecting at x do so transversely.

If im(L) is the disjoint union of the closed curves γi, then clearly im(π) will be the union of the closed
(though perhaps self-intersecting) curves π(γi). An orientation O on π is a choice of one of the two orienta-
tions, for each 1 ≤ i ≤ n, on the curve π(γi). A pair (π,O) of a projection π of L and an orientation O on π
is called an oriented projection of L; if π is regular, we say (π,O) is a regular oriented projection. If OL is an
orientation on L, then clearly there is an induced orientation Oind on any projection π on L.

Remark 1.6. It is evident that even in regular projections of a link we lose some information about the
link: the relative heights (with respect to the projection plane Π) of two points which project to a crossing.
This leads us to the following definition.

Definition 1.7. Let L be a link. A link diagram of L is a pair (π,A) of a regular projection π of L and a
crossing assignment A on π, that is, for each crossing x of π, a choice of which of the two curve segments
intersecting at x lies below the other.

Determining this data A from L is easy. Suppose π is induced by projection onto the plane Π ⊂ R3;
since we have fixed an orientation on R3 there is a canonical choice of unit normal vector n to Π. Then if
p, q ∈ im(L) are distinct points such that π(p) = π(q), we must have p − q = cn for some c ∈ R − {0}. Of
course then c > 0 implies p and its curve segment lie above q and its curve segment, and c < 0 implies the
opposite.

We illustrate the assignment A in figures by breaking the curve which lies below the other at the crossing
and leaving the other curve solid. E.g., if a diagram locally looks like, , then the crossing is the centre point
and the segment passing between the top-left and bottom-right lies below the segment passing between the
bottom-left and top-right.

An orientation O on a link diagram (π,A) is simply an orientation O on π. We call the triple (π,A,O) an
oriented link diagram. We illustrate orientation in figures using arrows to indicate direction in the obvious
way. E.g., if the above local diagram is annotated as , then the top curve segment is oriented from the
bottom-left to the top-right and the bottom curve segment is oriented from the bottom-right to the top-left.

Fact 1.8. Every link (resp. oriented link) has a link diagram (resp. oriented link diagram).

Remark 1.9. Continuing our thought from Remark 1.6: it is also evident, though, that for regular projec-
tions, this is the only information we lose. That is, if we have a link diagram, then we know the relative
heights at each crossing. Since heights can clearly then be adjusted via ambient isotopy as long as the relative
heights at crossings are maintained, it follows that a link diagram determines a link up to ambient isotopy.
Of course this holds with orientations equipped as well. We restate this as the following fact.

Fact 1.10. The link type [L] (resp. oriented link type [(L,O)]) of a link (resp. oriented link) L (resp. (L,O))
is determined by any link diagram (resp. oriented link diagram) of L (resp. (L,O)).

We have a notion of isotopy-equivalence for link diagrams completely analogous to the notion of ambient
isotopy of links discussed earlier.

Definition 1.11. Let (π,A), (π′,A′) be link diagrams. A planar isotopy from (π,A) to (π′,A′) consists of
a family of homeomorphisms {ht}0≤t≤1 of R2 satisfying the following conditions:

(1) the map h : R2 × [0, 1] −→ R2 sending (x, t) 7−→ ht(x) is continuous,
(2) h0 = idR2 , and
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(3) h1 ◦ π = π′, such that the crossing assignment Aind induced on π′ by A and h1 agrees with A′.

Let O,O′ be orientations on π, π′, respectively. A planar isotopy (of oriented link diagrams) from (π,A,O) to
(π′,A′, ,O′) consists of an ambient isotopy {ht}0≤t≤1 from (π,A) to (π′,A′) such that the orientation Oind

induced on π′ by O and h1 agrees with O′.
The above clearly gives us an equivalence relation on link diagrams (resp. oriented link diagrams): (π,A)

(resp. (π,A,O)) and (π′,A′) (resp. (π′,A′,O′)) are planar isotopic if and only if there exists a planar isotopy
from (π,A) (resp. (π,A,O)) to (π′,A′) (resp. (π′,A′,O′)). The equivalence class of (π,A) (resp. (π,A,O)) is
denoted [(π,A)] (resp. [(π,A,O)]).

Notation 1.12. Denote by Dgm the set of equivalence classes of link diagrams modulo planar isotopy and
by OrDgm the set of equivalence classes of oriented link diagrams modulo planar isotopy.

Now, clearly it is much easier to visualise and think about link diagrams than to do so about links
themselves. It would be supremely convenient, given two link diagrams, to have a necessary and sufficient
condition on the diagrams for their links to be equivalent. In fact, there indeed exists such a condition!

Definition 1.13. We define the Reidemeister moves Ωi,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 such that, for D = [(π,A)] ∈
Dgm, Ωi,j(D) = [(π′i,j ,A

′
i,j)] ∈ Dgm, where (π′i,j ,A

′
i,j) is the link diagram which is identical to (π,A)

except for one local change, as depicted in the following figure.

Ω1,1

Ω−1
1,1

Ω2,1

Ω−1
2,1

Ω3,1

Ω−1
3,1

Ω1,2

Ω−1
1,2

Ω2,2

Ω−1
2,2

Ω3,2

Ω−1
3,2

Figure 1. Reidemeister moves Ωi,j

For D = [(π,A,O)] ∈ OrDgm, we define the Reidemeister moves such that Ωi,j(D) = [(π′i,j ,A
′
i,j ,O

′
i,j)] ∈

OrDgm, where π′i,j ,A
′
i,j are as above and O′i,j is the obvious orientation induced on (π′i,j ,A

′
i,j) by O.

We use these Reidemeister moves to define an equivalence relation on Dgm and OrDgm.

Definition 1.14. Let D,D′ ∈ Dgm (resp. D,D′ ∈ OrDgm). We say D,D′ are equivalent if and only if
there is a finite sequence (Ωskik,jk)1≤k≤N , sk ∈ {±1}, 1 ≤ ik ≤ 3, 1 ≤ jk ≤ 2, N ∈ N, of Reidemeister moves
and their inverses such that

(ΩsNiN ,jN ◦ Ω
sN−1

iN−1,jN−1
◦ · · · ◦ Ωs1i1,j1)(D) = D′.

It is clear that this is indeed an equivalence relation on Dgm (resp. OrDgm).

Fact 1.15. Let L,L′ (resp. (L,O), (L′,O′)) be links (resp. oriented links) with link diagrams (π,A), (π′,A′)
(resp. oriented link diagrams (π,A,Oind), (π′,A′,O′ind)), respectively. Let D := [(π,A)], D′ := [(π′,A′)] (resp.
D := [(π,A,Oind)], D′ := [(π′,A′,O′ind)]). Then L,L′ are equivalent if and only if D,D′ are equivalent.

Due to this very useful characterisation of link equivalence, we will often be dealing with diagrams which
are identical everywhere except in a small neighbourhood. Thus the following notational convention will be
useful as well.

Notation 1.16. Suppose we have some set S and a (set) map F : Dgm −→ S. Assume there exists
G : S −→ S such that for D = [(π,A)] ∈ Dgm we have a relation

(∗) F (D) = G(F (D1), F (D2), . . . , F (Dr)),

where, for 1 ≤ i ≤ r, Di = [(π′i,A
′
i)] such that (π′i,A

′
i) is identical to (π,A) except for some local change

Ψi (in the same sense of the Reidemeister moves Ωi,j). Then we will denote this relation for general D by
replacing D and Di, 1 ≤ i ≤ r in (∗) with an illustration of the local part of the diagram which varies among
(the equivalence class representatives of) D,Di. See condition (2) of Definition 2.1 for the first example of
this.

3



Notation 1.17. We will denote by the equivalence class of the standard diagram of the trivial unknot
in Dgm.

Definition 1.18. Let D = [(π,A)], D′ = [(π′,A′)] ∈ Dgm. Define the disjoint union of D,D′, denoted
D q D′, by the equivalence class of the link diagram given by the disjoint union (in the obvious sense) of
(π,A) and (π′,A′) in R2.

We now have all the definitions, notations and facts stated to move on and discuss the Jones polynomial.

2. The Jones polynomial

We will characterise the Jones polynomial via an auxiliary polynomial known as the Kauffman bracket.

Definition 2.1. The Kauffman bracket is the unique assignment 〈−〉 : Dgm −→ Z[q, q−1] of Laurent
polynomial (in q) to each link diagram D ∈ Dgm which satisfies the following properties:

(1) 〈 〉 = 1,
(2) 〈 〉 = 〈 〉 − q 〈 〉, and
(3) 〈 qD〉 = (q + q−1) 〈D〉 for all D ∈ Dgm.

If D̃ = [(π,A,O)] ∈ OrDgm then we write 〈D̃〉 for 〈D〉 with D = [(π,A)] ∈ Dgm the unoriented link

diagram equivalence class underlying D̃.

Definition 2.2. Let D = [(π,A)] ∈ Dgm. Let X be the set of crossings of π. For x ∈ X call the equivalence
class of the link diagram locally changed at this crossing from to (resp. ) the 0-smoothing (resp.
1-smoothing) of D at x. A smoothing of D is the equivalence class of the link diagram locally changed at each
crossing from to either or , i.e., a choice of 0-smoothing or 1-smoothing of each x ∈ X. Of course it

follows that there are 2|X| smoothings of D, in bijection with {0, 1}X. And clearly a smoothing will be equal
to the equivalence class of a disjoint union

∐u
i=1 of some u ∈ N unknots.

Notation 2.3. In the situation of the above definition. For α ∈ {0, 1}X, define |α| :=
∑
x∈X α(x) and

uα ∈ N such that the smoothing of D corresponding to α is the equivalence class of
∐uα
i=1 .

Proposition 2.4. Let D = [(π,A)] ∈ Dgm. Let X be the set of crossings of π. Then

〈D〉 =
∑

α∈{0,1}X
(−1)|α|q|α|(q + q−1)uα .

Proof. We see this by induction on n := |X|. If n = 0, that is, X = ∅, then we must have D = [
∐u
i=1 ] for

some u ∈ N. By (1) and (3) of Definition 2.1 it is clear then that 〈D〉 = (q + q−1)u. Since {0, 1}X = {α}
in this case, with |α| = 0 (the empty sum, by convention) and uα = u by definition, the claim clearly holds
for n = 0. Now assume n > 0 and choose an arbitrary x ∈ X. Let D0 be the 0-smoothing and D1 the
1-smoothing of D at x. Then D0, D1 both have sets of crossings X′ := X − {x} with order n − 1. Then by
induction and (2) of Definition 2.1 we have

〈D〉 = 〈D0〉 − q 〈D1〉 =
∑

β∈{0,1}X′
(−1)|β|q|β|(q + q−1)uβ +

∑
γ∈{0,1}X′

(−1)|γ|+1q|γ|+1(q + q−1)uγ .

Now clearly to each β ∈ {0, 1}X′ we can associate an α ∈ {0, 1}X with α(y) = β(y) if y 6= x and α(x) = 0;
then |β| = |α| and since D0 results from a 0-smoothing at x of course uβ = uα. We can similarly associate

to each γ ∈ {0, 1}X′ an α ∈ {0, 1}X with α(y) = β(y) if y 6= x and α(x) = 1; then |α| = |γ|+ 1 and uγ = uα.
It follows that

〈D〉 =
∑

{α∈{0,1}X|
α(x)=0}

(−1)|α|qα(q + q−1)uα +
∑

{α∈{0,1}X|
α(x)=1}

(−1)|α|q|α|(q + q−1)uα =
∑

α∈{0,1}X
(−1)|α|q|α|(q + q−1)uα .

Thus the claim holds for n, and by induction we are done. �

Remark 2.5. The above proposition makes it evident that the Kauffman bracket is indeed well-defined and
unique.
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Definition 2.6. Let D = [(π,A,O)] ∈ OrDgm. Let x be a crossing of π. If the orientation O is such that
(π,A,O) locally looks like at x, then we call x a positive crossing, and if locally it looks like , then we
call x a negative crossing.

Definition 2.7. Let D = [(π,A,O)] ∈ OrDgm and X the set of crossings of π. Let n := |X|, n+ the number
of positive crossings in X, and n− the number of negative crossings in X. Define J(D) ∈ Z[q, q−1] by

J(D) := (−1)n−qn+−2n− 〈D〉 .
Proposition 2.8. If D,D′ ∈ OrDgm are equivalent then J(D) = J(D′).

Proof. By definition of equivalence in OrDgm and symmetry it suffices to show this when D′ = Ωi,j(D) for
some 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. Denote by n′+ (resp. n′−) the number of positive (resp. negative) crossings of D′.

First, i = 1. Applying (2) of Definition 2.1 twice gives us〈 〉
= −q2

〈 〉
for j = 1, and

〈 〉
= q−1

〈 〉
for j = 2.

We observe that regardless of the orientation on D,D′ we have n′− = n− + 1, n′+ = n+ for j = 1 and
n′+ = n+ + 1, n′− = n− for j = 2. Thus we have

J(D′) = (−1)n
′
−qn

′
+−2n′− 〈D′〉 = (−1)n−+1qn+−2n−−2(−q2 〈D〉) = (−1)n−qn+−2n− 〈D〉 = J(D)

for j = 1, and

J(D′) = (−1)n
′
−qn

′
+−2n′− 〈D′〉 = (−1)n−qn++1−2n−(q−1 〈D〉) = (−1)n−qn+−2n− 〈D〉 = J(D)

for j = 2. So J(D) is invariant under Ωs1,j , s ∈ {±1}, 1 ≤ j ≤ 2.
Now, i = 2. Applying (2) of Definition 2.1 and our computation for i = 1 gives us〈 〉

= −q
〈 〉

for j = 1, and

〈 〉
= −q

〈 〉
for j = 2.

We observe that regardless of the orientation on D,D′ we have n′− = n− + 1, n′+ = n+ + 1 for j = 1 and
j = 2. Thus we have

J(D′) = (−1)n
′
−qn

′
+−2n′− 〈D′〉 = (−1)n−+1qn++1−2n−−2(−q 〈D〉) = (−1)n−qn+−2n− 〈D〉 = J(D)

for j = 1 and j = 2. So J(D) is invariant under Ωs2,j , s ∈ {±1}, 1 ≤ j ≤ 2.
Finally, i = 3. Applying (2) of Definition 2.1 and our computation for i = 2 gives us〈 〉

=

〈 〉
for j = 1, and

〈 〉
=

〈 〉
for j = 2.

We observe that regardless of the orientation on D,D′ we have n′− = n−, n
′
+ = n+ for j = 1 and j = 2.

Thus we have
J(D′) = (−1)n

′
−qn

′
+−2n′− 〈D′〉 = (−1)n−qn+−2n− 〈D〉 = J(D)

for j = 1 and j = 2. So J(D) is invariant under Ωs3,j , s ∈ {±1}, 1 ≤ j ≤ 2. �

This invariance coupled Fact 1.15 allows us to make the following definition.

Definition 2.9. For any oriented link (L,O) we have J(D) = J(D′) for all oriented link diagram classes of
(L,O). We call this common Laurent polynomial the Jones polynomial of (L,O), denoted J(L,O), or just
J(L) if an orientation is implicit. Moreover if (L,O) and (L′,O′) are equivalent we have J(L,O) = J(L′,O′).
In this sense, the Jones polynomial is an invariant of oriented links.

3. Khovanov homology

Now, there is a general idea of categorification: replace set-theoretic notions—e.g., elements, functions,
equations of functions—with category-theoretic notions—e.g., objects, functors, natural transformations of
functors—and hope to get new theory or a deeper understanding of things. Khovanov did this for the Jones
polynomial, finding a more “categorical” link invariant which generalises the Jones polynomial [6]. Here we
will give the construction of this invariant, called Khovanov homology. However we will not give a proof of
invariance; this can be found in the original paper or in the exposition [2].

We first introduce some definitions and terminology regarding graded vector spaces, which are the objects
we will use to categorify polynomials. Fix throughout a field k, which all vector spaces will be over.
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Definition 3.1. A graded vector space V is a vector space of the form V =
⊕

i∈Z Vi, where each Vi is a
vector space called the i-th homogenous component of V . An element vi ∈ Vi is said to have degree i for
i ∈ Z. The graded dimension of V is the formal power series dimq(V ) :=

∑
i∈Z q

i dim(Vi), which is a Laurent

polynomial in Z[q, q−1] if dim(Vi) > 0 for only finitely many i ∈ Z.

Definition 3.2. Let V =
⊕

i Vi and W =
⊕

iWi be graded vector spaces. The (graded) tensor product
V ⊗W of V and W is the graded vector space

⊕
i(V ⊗W )i, where we define

(V ⊗W )i :=
⊕

{α,β∈Z|α+β=i}

Vα ⊗Wβ for i ∈ Z.

It is clear that dimq(V ⊗W ) = dimq(V ) · dimq(W ).

Definition 3.3. Let V =
⊕

i Vi and W =
⊕

iWi be graded vector spaces. A graded map of degree d ∈ Z is
a linear map ϕ : V −→W which satisfies

ϕ(Vi) ⊂Wi+d for i ∈ Z.

Definition 3.4. A complex of vector spaces V = (V •, d•) is a sequence of vector spaces V i and linear maps
di : V i −→ V i+1, i ∈ Z, such that di+1 ◦di = 0 for i ∈ Z. If V i is graded and di a graded map of degree 0 for
each i ∈ Z we say V is a complex of graded vector spaces. Since im(di) ⊂ ker(di+1), it makes sense to define
the homology spaces Hi(V ) := ker(di+1)/ im(di) for i ∈ Z, which are furthermore graded if V is graded.

Definition 3.5. Let V = (V •, d•) be a complex of graded vector spaces. The graded Euler characteristic of
V is defined to be the formal power series

χq(V ) :=
∑
i∈Z

(−1)i dimq(H
i(V )).

Assuming V i is finite dimensional for i ∈ Z, it is an easy consequence of the rank-nullity theorem that we
also have

χq(V ) :=
∑
i∈Z

(−1)i dimq(V
i).

Definition 3.6. For d ∈ Z we define the degree shift operation ·{r} on graded vector spaces V =
⊕

i Vi
by V {r}i := Vi−r for i ∈ Z, so that dimq(V {r}) = qr · dimq(V ). This also clearly induces a degree shift
operation on complexes of graded vector spaces V = (V •, d•), which we also denote by ·{r}. For s ∈ Z we
define the height shift operation ·[s] on complexes V = (V •, d•) by V [s]i := V i−s and d[s]i := di−s for i ∈ Z.

Construction 3.7. We now give a construction of the Khovanov bracket associated to a link diagram. Let V
be the graded vector space with basis {v±1}, where vσ has degree σ for σ ∈ {±1}. Then dimq(V ) = q+ q−1.

Let D = [(π,A)] ∈ Dgm and X be the set of crossings of π. Recall Notation 2.3. For α ∈ {0, 1}X define
Vα(D) := V ⊗uα{|α|}, the uα-th graded tensor power of V shifted by |α|. To make the bijection between
the factors of the disjoint union

∐uα
i=1 and the factors of the tensor power V ⊗uα concrete, fix a labelling

α
1 ,

α
2 , . . . ,

α
uα

of the factors of
∐uα
i=1 . Now, define

JDKi :=
⊕

{α∈{0,1}X||α|=i}

Vα(D) for i ∈ Z,

where we take the empty direct sum to be the zero vector space. Next let x ∈ X and ξ ∈ {0, 1}X−{x}. Let
α, β ∈ {0, 1}X be defined by α(y) := ξ(y), β(y) := ξ(y) for y ∈ X′ and α(x) = 0, β(x) = 1. We define a

map dξ : Vα(D) −→ Vβ(D). Let A :=
∐uα
i=1

α
i and B :=

∐uβ
i=1

β
i . One easily sees that we have only the

following two possibilities for the relationship between A and B.

(1) (uβ = uα + 1) We locally have
β
b q

β
c , 1 ≤ b < c ≤ uβ in B in place of

α
a , 1 ≤ a ≤ uα in A, and

otherwise A and B are identical, so we have a bijective correspondence ϕξ : {1, 2, . . . , uα}− {a} −→
{1, 2, . . . , uβ} − {b, c}. Define µ : V −→ V ⊗ V by sending

v+ 7−→ v+ ⊗ v− + v− ⊗ v+ and v− 7−→ v− ⊗ v−
and extending linearly. Then µ induces a map d′ξ : V ⊗uα −→ V ⊗uβ which acts as the identity between

the i-th factor in V ⊗uα and the ϕξ(i)-th factor in V ⊗uβ for 1 ≤ i ≤ uα, i 6= a, and which acts as µ
between the a-th factor in V ⊗uα and the b-th and c-th factors of V ⊗uβ . This finally induces a map
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dξ : V ⊗uα{|α|} −→ V ⊗uβ{|β|}. Since clearly d′ξ is a graded map of degree −1 and |β| = |α| + 1, dξ
is a graded map of degree 0.

(2) (uβ = uα − 1) We have
β
c , 1 ≤ c ≤ uβ in B in place of

α
a q

α
b , 1 ≤ a < b ≤ uα in A, and

otherwise A and B are identical, so we have a bijective correspondence ϕξ : {1, 2, . . . , uα}−{a, b} −→
{1, 2, . . . , uβ} − {c}. Define ν : V ⊗ V −→ V by sending

v+ ⊗ v− 7−→ v−, v+ ⊗ v+ 7−→ v+, v− ⊗ v+ 7−→ v−, and v− ⊗ v− 7−→ 0

and extending linearly. Then ν induces a map d′ξ : V ⊗uα −→ V ⊗uβ which acts as the identity between

the i-th factor in V ⊗uα and the ϕξ(i)-th factor in V ⊗uβ for 1 ≤ i ≤ uα, i /∈ {a, b}, and which acts
as ν between the a-th and b-th factors in V ⊗uα and the c-th factor of V ⊗uβ . This finally induces a
map dξ : V ⊗uα{|α|} −→ V ⊗uβ{|β|}. Since clearly d′ξ is a graded map of degree −1 and |β| = |α|+ 1,
dξ is a graded map of degree 0.

Now, fix an ordering X = {x1, x2, . . . , xn} of the crossings. Let 1 ≤ j ≤ n such that x = xj and pξ :=∑j−1
i=1 ξ(xj).
For 0 ≤ i < n we now define di : JDKi −→ JDKi+1 as the graded map of degree 0 which acts on v ∈ Vα(D)

for α ∈ {0, 1}X, |α| = i by

v 7−→
∑

{x∈X|α(x)=0}

(−1)pξα,x dξα,x(v),

where ξα,x ∈ {0, 1}X−{x}}, x ∈ X, α(x) = 0, is defined for y ∈ X − {x} by ξα,x(y) = α(y). And for i < 0
and i ≥ n, since either JDKi or JDKi+1 is the zero vector space, we set di to be the forced map. We claim
di+1 ◦ di = 0 for i ∈ Z, so JDK = (JDK•, d•) is a complex of graded vector spaces. This is obvious for i < 0
and i ≥ n− 1 so assume 0 ≤ i ≤ n− 2. Let v ∈ Vα(D) with α ∈ {0, 1}X, |α| = i. By definition we will have

(di+1 ◦ di)(v) =
∑

{(x,x′)∈X2|α(x)=α(x′)=0}

(−1)
pξα,x+pξ

αx,x′ (dξαx,x′ ◦ dξα,x)(v),

where αx ∈ {0, 1}X−{x
′}, (x, x′) ∈ X2, α(x) = α(x′) = 0, is defined for y ∈ X− {x, x′} by αx(y) = α(y) and

αx(x) = 1. Since the maps dξ defined above only depend on the link diagram locally, it is clear that

dξαx,x′ ◦ dξα,x = dξα
x′ ,x
◦ dξα,x′

for (x, x′) ∈ X2, α(x) = α(x′) = 0. On the other hand, if x = xs, x
′ = xt with 1 ≤ s < t ≤ n, then

pξα,x + pξαx,x′ =

s−1∑
j=1

ξα,x(xj) +

t−1∑
j=1

ξαx,x′(xj) = 2

s−1∑
j=1

α(xj) + 1 +

t−1∑
j=s+1

α(xj),

while

pξα,x′ + pξα
x′ ,x

=

t−1∑
j=1

ξα,x′(xj) +

s−1∑
j=1

ξαx′ ,x(xj) = 2

s−1∑
j=1

α(xj) +

t−1∑
j=s+1

α(xj).

Thus (−1)
pξα,x+pξ

αx,x′ = −(−1)
pξ
α,x′

+pξα
x′ ,x ; by symmetry the same result holds if t < s. From these two

observations it follows that

(−1)
pξα,x+pξ

αx,x′ (dξαx,x′ ◦ dξα,x)(v) = −(−1)
pξ
α,x′

+pξα
x′ ,x (dξα

x′ ,x
◦ dξα,x′ )(v),

which finally implies (di+1 ◦ di)(v) = 0, and hence di+1 ◦ di = 0.

Notation 3.8. As with the Kauffman bracket, if D̃ = [(π,A,O)] ∈ OrDgm, we denote by JD̃K the complex
JDK, where D = [(π,A)] ∈ Dgm.

Definition 3.9. Let D = [(π,A,O)] ∈ OrDgm and n, n+, n− as in Definition 2.7. We define the Khovanov
complex of D, denoted V(D), to be the complex JDK[−n−]{n+ − 2n−} of graded vector spaces.

Proposition 3.10. Let D,n, n+, n− as in the above definition. Then χq(V(D)) = J(D).

Proof. This is immediate from the construction of V(D), Proposition 2.4, and the second characterisation of
χq given in Definition 3.5. �

Thus we can define χq(L,O) to be the link invariant χq(V(D)) for any oriented link diagram D of (L,O).
In fact, as advertised above, we get an even stronger invariant out of this construction.
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Theorem 3.11. Suppose D,D′ ∈ OrDgm are equivalent. Then we have an isomorphism Hi(V(D)) '
Hi(V(D′)) for i ∈ Z. It follows that for (L,O) ∈ OrDgm we can define Hi(L,O) for i ∈ Z to be Hi(V(D))
for any oriented link diagram D of (L,O), and these homology spaces are link invariants.

Proof. Also as advertised, the proof is not included here. See [6]. �
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