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1. Introduction

In the first lecture of our tutorial, the knot group of the trefoil was remarked to be the

braid group B3. There are, in general, many more connections between knot theory and braid

groups. Furthermore, the study of these braid groups is also both important to mathematics

and applicable to physics. This paper explores the topic of braid groups and braids. The braid

groups and the pure braid groups will be introduced from both the algebraic and geometric

perspectives. From these definitions, the connections that these braid groups have with knot

theory are explored, culminating in a statement of Alexander’s Theorem.

2. Motivations

The motivation of our study begins with the knot group of the trefoil which was computed

to be a group with two generators, x and y, and the relation xyx = yxy. Another way this

relation arises naturally is to consider the ways to “braid” three strings together, where three

examples: x, y and x−1 are shown in Figure 1.

Figure 1. x, y, and x−1
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Indeed, note that if we can “compose” two braids by stacking them, we have that we can

“move” or “deform” the configuration xyx to the configuration yxy smoothly by nudging the

strings in Figure 2.

Figure 2. xyx and yxy

In a similar manner, we can see that the configuration obtained by composing x with x−1

can be deformed to three straight strings, what we might want to call the identity braid.

3. Geometric Braids

To make rigorous our intuition about these braid diagrams, we make the following definitions

(due to [2]):

Definition 3.1. A geometric braid on n ≥ 1 strings is a set b ⊂ R2 × I formed by n disjoint

topological intervals (called strings of b) such that the projection R2× I → I maps each string

homeomorphically onto I and string k starts at (k, 0, 0) and ends at (k, 0, 1).

We can therefore draw these geometric braids in 2-dimensions by using braid diagrams in

the same way that knots are represented in the knot diagrams. An example is shown below

in Figure 3. The vertices are labelled (x, y, t) ∈ R2 × I such that the x axis is horizontal, the

y axis is perpendicular to the page, and the t axis goes vertically. In particular, note that at

each of the finitely many crossings, exactly two strings meet transversely, and one goes above

and the other goes below.
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Figure 3. A braid on four strings

As with knots, we wish to define braids as equivalent if they can be continuously deformed

to each other. In particular, we can define an equivalence relation on the geometric braids

where two braids are equivalent if they are related by an isotopy where each intermediate

object is a geometric braid. The equivalence classes of this relation will henceforth be referred

to as braids. It is not difficult to see that each braid can be presented by a braid diagram and

that each braid diagram presents a well-defined braid.

We would like to be able to determine whether two braids are isotopic just by looking at

their braid diagrams. Therefore, we define two braid diagrams to be isotopic if there is an

isotopy between them where each intermediate object is a braid diagram. However, this notion

of equivalence does not suffice. Observe that, in particular, the two transformations pictured

below cannot be obtained by isotopies of braid diagrams. They are known as the Reidemeister

moves, Ω2 and Ω3, pictured in Figures 4 and 5, respectively.

It is known from [2] that:

Theorem 3.2. Two braid diagrams present isotopic geometric braids if and only if the di-

agrams are related by a finite sequence of isotopies, Reidemeister moves and/or inverses of

Reidemeister moves.
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Figure 4. Ω2 Figure 5. Ω3

4. The Braid Groups

As alluded to in the motivation section, there is a notion of composition for braids. To

compose a braid β1 with a braid β2, we can simply put β1 on top of β2 by matching up the

bottoms of the strings in β1 with the tops of the strings in β2, and then shrinking each braid

by a factor of 2 along the t axis (i.e., vertically). It can easily be seen that this is a well-defined

composition law on the set of braids on n strings.

Now, define for each 1 ≤ k ≤ n− 1 the elementary braids σ+
k and σ−k to be the braids made

by single crossings of the strands for k and k + 1, as shown in Figure 6.

Figure 6. σ+
k and σ−k

Observe that σ+
k σ
−
k = σ−k σ

+
k = 1, where 1 denotes the braid with no crossings. Thus, the

elementary braids σ+
k and σ−k for k = 1, 2, · · · , n − 1 generate a group. It is clear that every
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braid is in this group and the group consists only of braids. Therefore, the set of braids

with the composition operation forms a group. This group is known as the braid group, Bn.

Note that in this group, certainly σ+
i σ

+
j = σ+

j σ
+
i if i and j are not consecutive, since then

the two crossings will use disjoint pairs of strings. Furthermore, because of Ω3, we have that

σ+
i σ

+
i+1σ

+
i = σ+

i+1σ
+
i σ

+
i+1 (recall the motivation of Figure 2). Therefore, the following definition

of the braid group via generators and relations can easily be deduced.

Definition 4.1. The braid group Bn is generated by n−1 generators σ1, σ2, · · · , σn−1 and has

“braid” relations

σiσj = σjσi

for |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for 1 ≤ i ≤ n− 1.

For example, B1 is trivial, B2
∼= Z, and we already know what B3 is. The higher braid

groups can be hard to describe fully. However, the braid relations appear naturally in the

symmetric group; simply note that the adjacent transpositions si = (i i+ 1) satisfy the braid

relations, and thus, there is a map π : Bn → Sn taking σi 7→ si. Geometrically, this map just

takes a braid to the permutation mapping k to τ(k) where τ(k) is the integer corresponding

to the end of the kth string. As a result of π being surjective and Sn being nonabelian for

n ≥ 3, we have:

Corollary 4.2. Bn is nonabelian for n ≥ 3.

Furthermore, the pure braid group Pn is defined as the kernel of the map π. Geometrically,

these pure braids can be seen as represented by braids where the ith string starts at (i, 0, 0)

and end at (i, 0, 1).

We also have an obvious group homomorphism ι : Bn → Bn+1 where σi 7→ σi for i =

1, 2, · · · , n − 1. While this is an inclusion map, it is in fact unclear just from the algebra
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that this is injective. However, if we interpret the map ι geometrically as merely adding a

non-intersecting straight string to a braid b on n strings, it is clear that if ι(b) and ι(b′) are

isotopic, then b and b′ are isotopic just by restricting the isotopy.

5. Braids as Fundamental Groups

Recall our initial motivation of the braid group B3 being the knot group of the trefoil. One

might speculate that, in general, the braid groups occur naturally as fundamental groups.

Indeed, they do and we shall present this interpretation with the notation of [1].

We may consider the configuration space of n points in the complex plane,

C0,n̂ = {(z1, · · · , zn) ∈ C× · · · × C | zi 6= zj if i 6= j}.

The symmetric group acts on C0,n̂ by permuting the coordinates, and so we may quotient out

this action to get another space C0,n and a map τ : C0,n̂ → C0,n. We then claim that the pure

braid groups Pn and the braid groups Bn are the fundamental groups (where z is an arbitrary

base point)

Pn = π1(C0,n̂, z), Bn = π1(C0,n, τ(z)).

To see why this is true intuitively, we first observe that the quotient map τ : C0,n̂ → C0,n is

a covering space map. Then, we think about a point in C0,n as a set of n distinct points in

C; by lifting a loop to the covering space C0,n̂, we get a unique path I → C0,n̂ which, through

our identification of a point as n distinct points in C and the identification of C with R2,

becomes n paths which never coincide, ending and starting at points in the same fiber of τ .

This is precisely a braid. Observe that the notion of composition also matches with the first

geometric definition.

6. Relationship to Knots

In the final section, we present results to which the reader may find proofs in [2].

One may see one obvious way to turn a braid into a knot. Indeed, if one identifies the points

(i, 0, 0) and (i, 0, 1) for i = 1, 2, · · · , n, any braid becomes a link. Furthermore, if we think
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of the original braid as being embedded in a solid cylinder (with the lines t = 0 and t = 1

being the diameters of the caps of the cylinder), then by extending this identification to the

caps of the cylinder, this link is embedded inside of a solid torus. This process is known as

closing a braid β, and the resulting link, denoted β̂ is called the closure of the braid. Indeed,

it is proven in [2] that if two braids are isotopic, then their closures are isotopic as links in

the torus. Therefore, the isotopy class of the closure of a geometric braid depends only on its

isotopy class as a braid. In fact, we have the correspondence:

Theorem 6.1. For any β, β′ ∈ Bn, their closures β̂, β̂′ are isotopic in the solid torus if and

only if β and β′ are conjugate in Bn.

In general, a link L embedded in a solid torus V = D × S1 is called a closed n-braid if

L meets every disk D × {z} for z ∈ S1 at exactly n points, and each of these meetings is

transverse. It is clear that every closed n-braid can be cut apart to make a braid. Note also

that since any link in the solid torus can be given a canonical counter-clockwise orientation,

the process of closing a braid creates an oriented link. The point of all the preceding discussion

is so that we may state Alexander’s Theorem.

Theorem 6.2. (J. W. Alexander). Any oriented link in R3 is isotopic to the closure of a

braid.

This theorem highlights the importance of studying braids because it implies that by study-

ing braids, one is, in effect, studying all links.
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