
ARITHMETIC INTERSECTION ON GSPIN RAPOPORT–ZINK SPACES

CHAO LI AND YIHANG ZHU

Abstract. We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin
Rapoport–Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan–Gross–
Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart
of the arithmetic-geometric side of the arithmetic fundamental lemma proved by Rapoport–Terstiege–Zhang
in the minuscule case.
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1. Introduction

1.1. Motivation. The arithmetic Gan–Gross–Prasad conjectures (arithmetic GGP) generalize the celebrat-
ed Gross–Zagier formula to higher dimensional Shimura varieties ([GGP12, §27], [Zha12, §3.2]). It is a con-
jectural identity relating the heights of certain algebraic cycles on Shimura varieties to the central derivative
of certain Rankin–Selberg L-functions. Let us briefly recall the rough statement of the conjecture. The
diagonal embeddings of unitary groups

H = U(1, n− 1) ↪→ G = U(1, n− 1)×U(1, n)

or of orthogonal groups

H = SO(2, n− 1) ↪→ G = SO(2, n− 1)× SO(2, n),

induces an embedding of Shimura varieties ShH ↪→ ShG. We denote its image by ∆ and call it the diagonal
cycle or the GGP cycle on ShG. Let π be a tempered cuspidal automorphic representation on G appearing in
the middle cohomology of ShG. Let ∆π be the (cohomological trivialization of the) π-component of ∆. The
arithmetic GGP conjecture asserts that the (conditional) Beilinson–Bloch–Gillet–Soulé height of ∆π should
be given by the central derivative of a certain Rankin-Selberg L-function L(s, π) up to simpler factors,

〈∆π,∆π〉 ∼ L′(1/2, π).
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The Gross–Zagier formula [GZ86] and the work of Gross, Kudla, Schoen ([GK92], [GS95]) can be viewed as
the special cases n = 1 and n = 2 in the orthogonal case correspondingly. The recent work of Yuan–Zhang–
Zhang ([YZZ13], [YZZ]) has proved this conjecture for n = 1, 2 in the orthogonal case in vast generality.

In the unitary case, W. Zhang has proposed an approach for general n using the relative trace formula
of Jacquet–Rallis. The relevant arithmetic fundamental lemma relates an arithmetic intersection number of
GGP cycles on unitary Rapoport–Zink spaces with a derivative of orbital integrals on general linear groups.
The arithmetic fundamental lemma has been verified for n = 1, 2 ([Zha12]) and for general n in the minuscule
case by Rapoport–Terstiege–Zhang [RTZ13].

In the orthogonal case, very little is known currently beyond n = 1, 2 and no relative trace formula
approach has been proposed yet. However it is notable that R. Krishna [Kri16] has recently established
a relative trace formula for the case SO(2) × SO(3) and one can hope that his method will generalize to
formulate a relative trace formula approach for general SO(n− 1)× SO(n).

Our goal in this article is to establish an orthogonal counterpart of the arithmetic-geometric side of the
arithmetic fundamental lemma in [RTZ13], namely to formulate and compute the arithmetic intersection of
GGP cycles on GSpin Rapoport–Zink spaces in the minuscule case.

1.2. The main results. Let p be an odd prime. Let k = Fp, W = W (k), K = W [1/p] and σ ∈ Aut(W )

be the lift of the absolute p-Frobenius on k. Let n ≥ 4.1 Let V [ be a self-dual quadratic space over Zp of
rank n − 1 and let V = V [ ⊕ Zpxn (orthogonal direct sum) be a self-dual quadratic space over Zp of rank
n, where xn has norm 1. Associated to the embedding of quadratic spaces V [ ↪→ V we have an embedding
of algebraic groups G[ = GSpin(V [) ↪→ G = GSpin(V ) over Zp. After suitably choosing compatible local
unramified Shimura–Hodge data (G[, b[, µ[, C(V [)) ↪→ (G, b, µ, C(V )), we obtain a closed immersion of the
associated GSpin Rapoport–Zink spaces

δ : RZ[ ↪→ RZ .

See §2 for precise definitions and see §3.2 for the moduli interpretation of δ. The space RZ is an example of
Rapoport–Zink spaces of Hodge type, recently constructed by Kim [Kim13] and Howard–Pappas [HP17]. It
is a formal scheme over Spf W , parameterizing deformations (up to quasi-isogeny) of a p-divisible group X0/k

with certain crystalline Tate tensors (coming from the defining tensors of G inside some GLN ). Roughly
speaking, if X[ is the p-divisible group underlying a point x ∈ RZ[, then the p-divisible group underlying
δ(x) ∈ RZ is given by X = X[ ⊕X[.

Remark 1.2.1. The datum (G, b, µ, C(V )) is chosen such that the space RZ provides a p-adic uniformization
of (ŜW )/Sss

, the formal completion of SW along Sss, where SW is the base change to W of Kisin’s integral
model ([Kis10]) of a GSpin Shimura variety (which is of Hodge type) at a good prime p, and Sss is the
supersingular locus (= the basic locus in this case) of the special fiber of SW (see [HP17, 7.2]).

The group Jb(Qp) = {g ∈ G(K) : gb = bσ(g)} is the Qp-points of an inner form of G and acts on RZ via
its action on the fixed p-divisible group X0. Let g ∈ Jb(Qp). As explained in §3, the intersection of the GGP
cycle ∆ on RZ[×W RZ and its g-translate leads to study of the formal scheme

(1.2.1.1) δ(RZ[) ∩ RZg,

where RZg denotes the g-fixed points of RZ.
We call g ∈ Jb(Qp) regular semisimple if

L(g) := Zpxn + Zpgxn + · · ·+ Zpgn−1xn

1When n = 3, one can formulate the arithmetic fundamental lemma for SO(2) × SO(3) building on the work [Kri16]. We
have verified it in the minuscule case by explicit calculation and so we exclude n = 3 for notational convenience.
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is a free Zp-module of rank n. Let L(g)∨ denote the dual lattice of L(g). We further call g minuscule if
L(g) ⊂ L(g)∨ (i.e. the quadratic form restricted to L(g) is valued in Zp), and L(g)∨/L(g) is a Fp-vector
space. See Definition 3.3.2 for equivalent definitions. When g ∈ Jb(Qp) is regular semisimple and minuscule,
we will show that the formal scheme (1.2.1.1) is in fact a 0-dimensional scheme of characteristic p. Our main
theorem is an explicit formula for its arithmetic intersection number (i.e., the total W -length of its local
rings).

To state the formula, assume g is regular semisimple and minuscule, and suppose RZg is nonempty. Then
g stabilizes both L(g)∨ and L(g) and thus acts on the Fp-vector space L(g)∨/L(g). Let P (T ) ∈ Fp[T ] be
the characteristic polynomial of g acting on L(g)∨/L(g). For any irreducible polynomial R(T ) ∈ Fp[T ], we
denote its multiplicity in P (T ) by m(R(T )). Moreover, for any polynomial R(T ), we define its reciprocal by

R∗(T ) := T degR(T ) ·R(1/T ).

We say R(T ) is self-reciprocal if R(T ) = R∗(T ). Now we are ready to state our main theorem:

Theorem A. Let g ∈ Jb(Qp) be regular semisimple and minuscule. Assume RZg is non-empty. Then

(1) (Corollary 5.1.2) δ(RZ[) ∩ RZg is a scheme of characteristic p.
(2) (Theorem 3.6.4) δ(RZ[) ∩ RZg is non-empty if and only if P (T ) has a unique self-reciprocal monic

irreducible factor Q(T )|P (T ) such that m(Q(T )) is odd. In this case, pZ\(δ(RZ[)∩RZg)(k) is finite and
has cardinality

degQ(T ) ·
∏
R(T )

(1 +m(R(T ))),

where R(T ) runs over all non-self-reciprocal monic irreducible factors of P (T ). Here, the group pZ acts
on RZ via the central embedding pZ ↪→ Jb(Qp), and the action stabilizes δ(RZ[) ∩ RZg.

(3) (Corollary 5.4.2) Let c = m(Q(T ))+1
2 . Then 1 ≤ c ≤ n/2. Assume p > c. Then δ(RZ[)∩RZg is a disjoint

union over its k-points of copies of Spec k[X]/Xc. In particular, the intersection multiplicity at each
k-point of δ(RZ[) ∩ RZg is the same and equals c.

Along the way we also prove a result that should be of independent interest. In [HP17], Howard–Pappas
define closed formal subschemes RZΛ of RZ for each vertex lattice Λ (recalled in §2). Howard–Pappas study
the reduced subscheme RZred

Λ detailedly and prove that they form a nice stratification of RZred. We prove:

Theorem B (Theorem 4.2.11). RZΛ = RZred
Λ for each vertex lattice Λ.

1.3. Novelty of the method. The results Theorem A and Theorem B are parallel to the results in [RTZ13]
for unitary Rapoport–Zink spaces. The main new difficulty in the GSpin case is due to the fact that, unlike
the unitary case, the GSpin Rapoport–Zink spaces are not of PEL type. They are only of Hodge type, and
as for now they lack full moduli interpretations that are easy to work with directly (see Remark 2.4.1).

In [RTZ13], the most difficult parts are the reducedness of minuscule special cycles [RTZ13, Theorem
10.1] and the intersection length formula [RTZ13, Theorem 9.5]. They are the analogues of Theorem B
and Theorem A (3) respectively. In [RTZ13], they are proved using Zink’s theory of windows and displays
of p-divisible groups and involve rather delicate linear algebra computation. In contrast, in our method we
rarely directly work with p-divisible groups and we completely avoid computations with windows or displays.
Instead we make use of what are essentially consequences of Kisin’s construction of integral models of Hodge
type Shimura varieties to abstractly reduce the problem to algebraic geometry over k. More specifically, we
reduce the intersection length computation to the study of a certain scheme of the form SḡΛ (Proposition
5.1.4), where SΛ is a smooth projective k-variety closely related to orthogonal Grassmannians, and ḡ is a
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certain finite order automorphism of S. Thus our method overcomes the difficulty of non-PEL type and also
makes the actual computation much more elementary.

It is worth mentioning that our method also applies to the unitary case considered in [RTZ13]. Even
in this PEL type case, our method gives a new and arguably simpler proof of the arithmetic fundamental
lemma in the minuscule case (see [LZ17]).

It is also worth mentioning that the very recent work of Bueltel–Pappas [BP17] gives a new moduli
interpretation for Rapoport–Zink spaces of Hodge type when restricted to p-nilpotent noetherian algebras.
Their moduli description is purely group-theoretic (in terms of (G,µ)-displays) and does not involve p-
divisible groups. Although we do not use (G,µ)-displays in this article, it would be interesting to see if
it is possible to extend the results of this article using their group-theoretic description (e.g., to certain
non-minuscule cases).

1.4. Strategy of the proofs. Our key observation is that in order to prove these theorems, we only need
to understand O-points of RZ for very special choices of W -algebras O.

To prove Theorem B, it turns out that we only need to understand RZ(W/p2) and RZ(k[ε]/ε2). Note
that the W -algebras W/p2 and k[ε]/ε2, when viewed as thickenings of Spec k (under reduction modulo p or
ε respectively), are objects of the crystalline site of Spec k. For such an object O, we prove in Theorem 4.1.7
an explicit description of RZ(O) and more generally an explicit description of Z(O), for any special cycle
Z in RZ. Theorem 4.1.7 is the main tool to prove Theorem B, and is also the only place we use p-divisible
groups. This result is a Rapoport–Zink space analogue of a result of Madapusi Pera [MP16, Proposition
5.16] for GSpin Shimura varieties. Its proof also relies on loc. cit. and is ultimately a consequence of Kisin’s
construction of the integral canonical models of Hodge type Shimura varieties [Kis10].

To prove the intersection length formula Theorem A (3), let Λ be the vertex lattice L(g)∨. Theorem B
allows us to reduce Theorem A (3) to the problem of studying the fixed-point subscheme of the smooth
k-variety SΛ

∼= pZ\RZred
Λ , under the induced action ḡ ∈ SO(Λ/Λ∨) of g. Moreover, Howard–Pappas [HP17]

provides an explicit description of SΛ. This is now a problem purely concerning algebraic geometry over
k. Since the fixed point of a smooth k-variety under a group of order coprime to p is still smooth ([Ive72,
1.3]), this point of view immediately explains that when ḡ is semisimple (in which case m(Q(T )) = 1), the
intersection multiplicity must be 1. More generally, under the simplifying assumption p > c, we further reduce
the intersection length computation to more elementary algebraic geometry of orthogonal Grassmannians
over k (Lemma 5.2.9), which allows us to finally obtain the intersection length formula.

The remaining parts of Theorem A are relatively easier. From Theorem B it is not difficult to deduce
Theorem A (1). The set of k-points of RZ is well understood group theoretically in terms of the affine
Deligne–Lusztig set. The point counting formula Theorem A (2) essentially only relies on this description,
and we follow the strategy in [RTZ13] to give a short streamlined proof (Proposition 3.4.4).

1.5. Organization of the paper. In §2, we review the structure of GSpin Rapoport–Zink spaces and
special cycles. In §3, we formulate the arithmetic intersection problem of GGP cycles and prove the point-
counting formula for the k-points of the intersection in the minuscule case (Theorem A (2)). In §4, we prove
reducedness of minuscule special cycles (Theorem B). In §5, we deduce from Theorem B that the arithmetic
intersection is concentrated in the special fiber (Theorem A (1)) and finally compute the intersection length
when p is sufficiently large (Theorem A (3)).

1.6. Acknowledgments. We are very grateful to B. Howard, M. Kisin, M. Rapoport and W. Zhang for
helpful conversations or comments. We would also like to thank the referee for a careful reading and numerous
suggestions. Our debt to the two papers [RTZ13] and [HP17] should be clear to the readers.
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2. GSpin Rapoport–Zink spaces

In this section we review the structure of GSpin Rapoport–Zink spaces due to Howard–Pappas [HP17].
We refer to [HP17] for the proofs of these facts.

2.1. Quadratic spaces and GSpin groups. Let p be an odd prime. Let (V, q) be a non-degenerate self-
dual quadratic space over Zp of rank n ≥ 3. By definition the Clifford algebra C(V ) is the quotient of the
tensor algebra V ⊗ by the two sided ideal generated by elements of the form v⊗ v− q(v). It is free of rank 2n

over Zp. The linear map v 7→ −v preserves the quadratic form q on V and induces an involution on C(V ).
This involution decomposes C(V ) = C+(V ) ⊕ C−(V ) into even and odd parts. The image of the injection
V ↪→ C−(V ) generates C(V ) as a Zp-algebra.

We also have a canonical involution ∗ : C(V ) → C(V ), which a Zp-linear endomorphism characterized
by (v1v2 · · · vk)∗ = vk · · · v2v1 for vi ∈ V . The spinor similitude group G = GSpin(V ) is the reductive group
over Zp such that for a Zp-algebra R,

G(R) = {g ∈ C+(V )× : gVRg
−1 = VR, g∗g ∈ R×}.

The character ηG : G→ Gm given by g 7→ g∗g is the called spinor similitude.
Let G act on C(V ) by the conjugation action g.v = gvg−1. This action stabilizes V and preserves the

quadratic form q. Thus we obtain a homomorphism

G→ SO(V ).

The kernel of the above morphism is the central Gm inside G given by the natural inclusion R× ⊂ G(R) for
any Zp-algebra R. The restriction of ηG on the central Gm is given by g 7→ g2. Note that the central Gm in
G is equal to the identity component of the center of G, and it is equal to the center of G precisely when n
is odd.

2.2. Basic elements in GSpin groups. Let k = Fp, W = W (k) and K = W [1/p]. Let σ ∈ Aut(W ) be
the lift of the absolute p-Frobenius on k. Let D = HomZp(C(V ),Zp) be the contragredient G-representation
of C(V ).

Any b ∈ G(K) determines two isocrystals

(VK ,Φ = b ◦ σ), (DK , F = b ◦ σ).

Denote by T the pro-torus over Qp of character group Q. Recall that b ∈ G(K) is basic if its slope morphism
νb : TK → GK factors through (the identity component) of Z(GK), i.e., factors through the central Gm. By
[HP17, 4.2.4], b is basic if and only if (VK ,Φ) is isoclinic of slope 0, if and only if (DK , F ) is isoclinic of slope
−νb ∈ Hom(TK ,Gm) ∼= Q. The map b 7→ νb gives a bijection between the set of basic σ-conjugacy classes
and the set 1

2Z. Moreover, the Qp-quadratic space

V Φ
K = {x ∈ VK : Φx = x}

has the same dimension and determinant as VQp , and has Hasse invariant (−1)2νb ([HP17, 4.2.5])).

2.3. Local unramified Shimura–Hodge data. Since V is self-dual, we know that VQp has Hasse invariant
+1. In particular V contains at least one hyperbolic plane and we can pick a Zp-basis x1, . . . , xn of V such
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that the Gram matrix of the quadratic form q under this basis 2 is of the form

0 1

1 0

∗
∗

. . .
∗


We will fix x1, . . . , xn once and for all. Define a cocharacter

µ : Gm → G, t 7→ t−1x1x2 + x2x1.

Pick an explicit element b = x3(p−1x1 + x2) ∈ G(Qp), then one can show that b is basic with νb = 1
2 . Thus

V Φ
K has the opposite Hasse invariant −1 (cf. §2.2).
Fix any δ ∈ C(V )× such that δ∗ = −δ. Then ψδ(c1, c2) = Trd(c1δc

∗
2) defines a non-degenerate symplectic

form on C(V ), where Trd : C(V )→ Zp is the reduced trace (see [HP17, §4.1.2]). We have a closed immersion
into the symplectic similitude group

G ↪→ GSp(C(V ), ψδ).

By [HP17, 4.2.6], the tuple (G, b, µ, C(V )) defines a local unramified Shimura–Hodge datum (in the sense of
[HP17, 2.2.4]). In fact, for the fixed G and µ, the σ-conjugacy class of b is the unique basic σ-conjugacy
class for which (G, b, µ) is a local unramified Shimura–Hodge datum (cf. [HP17, 4.2.7]).

Remark 2.3.1. The tuple (G, b, µ, C(V )) is chosen in such a way that the associated Rapoport–Zink space
(see below) provides a p-adic uniformization for the supersingular locus of a related GSpin Shimura variety.
For more details on the relation with Shimura varieties see [HP17, §7].

2.4. GSpin Rapoport–Zink spaces. There is a unique (up to isomorphism) p-divisible group X0/k such
that its (contravariant) Dieudonné module D(X0) is given by the W -lattice DW in the isocrystal DK . The
non-degenerate symplectic form ψδ induces a principal polarization λ0 of X0. Fix a collection of tensors (sα)

on C(V ) cutting out G from GL(C(V )) (including the symplectic form ψδ). By [HP17, 4.2.7], we have a
GSpin Rapoport–Zink space

RZ := RZ(G, b, µ, C(V ), (sα)).

It is a formal scheme over W , together with a closed immersion into the symplectic Rapoport–Zink space
RZ(X0, λ0). Moreover, the formal scheme RZ itself depends only on the local unramified Shimura–Hodge
datum (G, b, µ, C(V )), and not on the choices of the tensors (sα).

Denote by (X, ρ, λ) the universal triple over RZ(X0, λ0), where X is the universal p-divisible group, ρ
is the universal quasi-isogeny, and λ is the universal polarization. Consider the restriction of this triple to
the closed formal subscheme RZ of RZ(X0, λ0). We denote this last triple also by (X, ρ, λ) and call it the
universal triple over RZ.

Remark 2.4.1. Let NilpW be the category of W -algebras in which p is nilpotent. As a set-valued functor on
the category NilpW , the symplectic Rapoport-Zink space RZ(X0, λ0) has an explicit moduli interpretation
in terms of triples (X, ρ, λ). In contrast, the subfunctor defined by RZ does not have an explicit description.
In fact, in [HP17] Howard–Pappas only give a moduli interpretation of RZ when it is viewed as a set-valued
functor on a more restricted category ANilpfsm

W . In this article we do not make use of this last moduli

2By this we mean the n× n matrix whose (i, j)-th entry is q(xi + xj) − q(xi) − q(xj).
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interpretation. All we will need is the global construction of RZ as a formal subscheme of RZ(X0, λ0) due to
Howard–Pappas.

Over RZ, the universal quasi-isogeny ρ respects the polarizations λ and λ0 up to a scalar c(ρ) ∈ Q×p , i.e.,
ρ∨ ◦ λ ◦ ρ = c−1(ρ) · λ0 (Zariski locally on RZk). Let RZ(`) ⊆ RZ be the closed and open formal subscheme
where ordp(c(ρ)) = `. We have the decomposition into a disjoint union

RZ =
∐
`∈Z

RZ(`) .

In fact each RZ(`) is connected and they are mutually (non-canonically) isomorphic. cf. [HP17, 4.3.3, 4.3.4].

2.5. The group Jb. The algebraic group Jb = GSpin(V Φ
K ) has Qp-points

Jb(Qp) = {g ∈ G(K) : gb = bσ(g)},

and Jb(Qp) acts on RZ via its action on X0 as quasi-endomorphisms. The action of g ∈ Jb(Qp) on RZ

restricts to isomorphisms

RZ(`) ∼−→ RZ(`+ordp(ηb(g))), ` ∈ Z(2.5.0.1)

where ηb : Jb(Qp)→ Q×p is the spinor similitude. In particular, pZ ⊆ Jb(Qp) acts on RZ and since ηb(p) = p2,
we have an isomorphism

pZ\RZ ∼= RZ(0)
∐

RZ(1) .

Remark 2.5.1. In this article we are interested in studying the fixed locus RZg of RZ under g ∈ Jb(Qp). By
(2.5.0.1) this is non-empty only when ordp(ηb(g)) = 0. Since pZ is central in Jb(Qp), one could also study
(pZ\RZ)g for g ∈ Jb(Qp). However by (2.5.0.1), we know that (pZ\RZ)g 6= ∅ only if ordp(ηb(g)) is even,
and in this case

(pZ\RZ)g ∼= pZ\RZg0 ,

where g0 = p− ordp(ηb(g))/2g. Hence the study of (pZ\RZ)g for general g reduces to the study of RZg for g
satisfying ordp(ηb(g)) = 0.

2.6. Special endomorphisms. Using the injection V ↪→ C(V )op, we can view

V ⊆ EndZp(D)

as special endomorphisms of D: the action of v ∈ V on D is explicitly given by

(vd)(c) = d(vc), d ∈ D, c ∈ C(V ).

Base changing to K gives VK ⊆ EndK(DK). Since the F -equivariant endomorphisms EndK,F (DK) can be
identified with the space of quasi-endomorphisms End0(X0) of X0, we obtain an embedding of Qp-vector
spaces

V Φ
K ↪→ End0(X0).

Elements of V Φ
K are thus viewed as quasi-endomorphisms of X0, and we call them special quasi-endomorphisms.
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2.7. Vertex lattices.

Definition 2.7.1. A vertex lattice is a Zp-lattice Λ ⊆ V Φ
K such that

pΛ ⊆ Λ∨ ⊆ Λ.

We define

Ω0 = Λ/Λ∨.

Then the quadratic form v 7→ p · q(v) makes Ω0 a non-degenerate quadratic space over Fp. The type of Λ is
defined to be tΛ := dimFp Ω0.

By [HP17, 5.1.2], the type of a vertex lattice is always an even integer such that 2 ≤ tΛ ≤ tmax , where

tmax =


n− 2, if n is even and det(VQp) = (−1)n/2 ∈ Q×p /(Q×p )2,

n− 1, if n is odd,

n, if n is even and det(VQp) 6= (−1)n/2 ∈ Q×p /(Q×p )2.

It follows that the quadratic space Ω0 is always non-split, because otherwise a Lagrangian subspace L ⊆ Ω0

would provide a vertex lattice Λ∨ + L ⊆ V Φ
K of type 0 (cf. [HP17, 5.3.1])

2.8. The variety SΛ.

Definition 2.8.1. Define

Ω = Ω0 ⊗Fp k
∼= ΛW /Λ

∨
W .

Let d = tΛ/2. Let OGr(Ω) be the moduli space of Lagrangian subspaces L ⊆ Ω. We define SΛ ⊆ OGr(Ω) to
be the reduced closed subscheme of OGr(Ω) with k-points given as follows:

SΛ(k) = {Lagrangian subspaces L ⊆ Ω : dim(L+ Φ(L)) = d+ 1}
∼= {(Ld−1,Ld) : Ld ⊆ Ω Lagrangian,Ld−1 ⊆ Ld ∩ ΦLd,dimLd−1 = d− 1},

where the last bijection is given by L 7→ (L ∩ ΦL,L).

More precisely, for any k-algebra R, the R-points SΛ(R) is the set of pairs (Ld−1,Ld) such that:

• Ld is a totally isotropic R-module local direct summand of Ω⊗k R of local rank d,
• Ld−1 is an R-module local direct summand of Ω⊗k R of local rank d− 1,
• Ld−1 ⊂ Ld ∩ ΦLd, where Φ acts on Ω ⊗k R = Ω0 ⊗Fp R via the identity on Ω0 and the p-Frobenius on
R. In particular, Ld−1 is totally isotropic, and is a local direct summand of Ld and of ΦLd. (For the last
statement see Remark 2.8.2 below.)

By [HP17, 5.3.2], SΛ is a k-variety with two isomorphic connected components S±Λ , each being projective
and smooth of dimension tΛ/2− 1. For more details, see [HP17, §5.3] and [HP14, §3.2].

Remark 2.8.2. In the sequel we will frequently use the following simple fact without explicitly mentioning
it. Let R be a commutative ring and M a free R-module of finite rank. Suppose M1,M2 are submodules
of M that are local direct summands. Suppose M1 ⊂ M2. Then M1 is a local direct summand of M2, and
both M1 and M2 are locally free.
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2.9. Structure of the reduced scheme RZred.

Definition 2.9.1. For a vertex lattice Λ, we define RZΛ ⊆ RZ to be locus where ρ ◦ Λ∨ ◦ ρ−1 ⊆ End(X),
i.e. the quasi-endomorphisms ρ ◦ v ◦ ρ−1 lift to actual endomorphisms for any v ∈ Λ∨. In other words, if we
define a locus RZ(X0, λ0)Λ using the same condition inside RZ(X0, λ0) (a closed formal subscheme by [RZ96,
Proposition 2.9]), then RZΛ is the intersection of RZ with RZ(X0, λ0)Λ inside RZ(X0, λ0). In particular, RZΛ

is a closed formal subscheme of RZ.

Consider the reduced subscheme RZ(`),red of RZ(`). By the result [HP17, 6.4.1], the irreducible components
of RZ(`),red are precisely RZ

(`),red
Λ , where Λ runs through the vertex lattices of the maximal type tΛ = tmax.

Moreover, there is an isomorphism of k-schemes ([HP17, 6.3.1])

(2.9.1.1) pZ\RZred
Λ

∼−→ SΛ,

which also induces an isomorphism between RZ
(`),red
Λ and S±Λ , for each ` ∈ Z. In particular, RZred is

equidimensional of dimension tmax/2− 1.

2.10. The Bruhat–Tits stratification. For any vertex lattices Λ1 and Λ2, the intersection RZred
Λ1
∩RZred

Λ2

is nonempty if and only if Λ1∩Λ2 is also a vertex lattice, in which case it is equal to RZred
Λ1∩Λ2

([HP17, 6.2.4]).
In this way we obtain a Bruhat–Tits stratification on RZred. Associated to a vertex lattice Λ, we define an
open subscheme of RZred

Λ given by
BTΛ = RZred

Λ −
⋃

Λ′(Λ

RZred
Λ′ .

Then
RZred =

∐
Λ

BTΛ

is a disjoint union of locally closed subschemes, indexed by all vertex lattices.

2.11. Special lattices. One can further parametrize the k-points in each RZΛ using special lattices.

Definition 2.11.1. We say aW -lattice L ⊆ VK is a special lattice if L is self-dual and (L+Φ(L))/L ∼= W/pW .

We have a bijection ([HP17, 6.2.2])

(2.11.1.1) pZ\RZ(k)
∼−→ {special lattices L ⊆ VK}.

To construct this bijection, one uses the fact ([HP17, 3.2.3]) that pZ\RZ(k) can be identified with the affine
Deligne–Lusztig set

(2.11.1.2) XG,b,µσ (k) = {g ∈ G(K) : g−1bσ(g) ∈ G(W )µσ(p)G(W )}/G(W ).

The special lattice associated to g ∈ G(K) is then given by gµ(p−1).VW ⊆ VK . Conversely, given a special
lattice L ⊆ VK , then there exists some g ∈ G(K) such that gµ(p−1).VW = L and g.VW = Φ(L). The point
in RZ(k) then corresponds to the image of g in XG,b,µσ (k). The Dieudonné module of the p-divisible group
at this point is given by M = gDW ⊆ DK and the image of Verschiebung is (F−1p)M = g · pµ(p−1)DW .

Lemma 2.11.2. Suppose x0 ∈ RZ(k) corresponds to the special lattice L under (2.11.1.1). Let M =

D(X0) ⊂ DK be the Dieudonné module of the p-divisible group X0 corresponding to x0. Then we have

L =
{
v ∈ VK |v(F−1p)M ⊂ (F−1p)M

}
, ΦL = {v ∈ VK |vM ⊂M} .

Here we view VK ⊂ EndK(DK) as in §2.6.

Proof. This follows from [HP17, 6.2.1, 6.2.2]. �
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2.12. Special lattices and vertex lattices. For any vertex lattice Λ, the bijection (2.11.1.1) induces a
bijection

pZ\RZΛ(k)
∼−→ {special lattices L ⊆ VK : Λ∨W ⊆ L ⊆ ΛW } = {special lattices L ⊆ VK : Λ∨W ⊆ L}

(2.12.0.1)

Sending a special lattice L to L := L/Λ∨W ⊆ Ω gives a bijection between the right hand side of (2.12.0.1)
and SΛ(k), which is the effect of the isomorphism (2.9.1.1) on k-points.

Definition 2.12.1. For each special lattice L ⊆ VK , there is a unique minimal vertex lattice Λ(L) ⊆ V Φ
K

such that
Λ(L)∨W ⊆ L ⊆ Λ(L)W .

In fact, let L(r) = L + Φ(L) + · · · + Φr(L). Then there exists a unique integer 1 ≤ d ≤ tmax/2 such that
L(i) ( L(i+1) for i < d, and L(d) = L(d+1). Then L(i+1)/L(i) all have W -length 1 for i < d, and

Λ(L) := (L(d))Φ ⊆ V Φ
K

is a vertex lattice of type 2d and Λ(L)∨ = LΦ.

Notice that Λ(L)W is the smallest Φ-invariant lattice containing L and Λ(L)∨W is the largest Φ-invariant
lattice contained in L. It follows that the element of RZ(k) corresponding to a special lattice L lies in RZΛ

if and only if Λ(L) ⊆ Λ, and it lies in BTΛ if and only if Λ(L) = Λ. Thus we have the bijection

(2.12.1.1) pZ\BTΛ(k)
∼−→ {L special lattices : Λ(L) = Λ}.

2.13. Deligne–Lusztig varieties. For any vertex lattice Λ, by [HP17, 6.5.6], pZ\BTΛ is a smooth quasi-
projective variety of dimension tΛ/2 − 1, isomorphic to a disjoint union of two Deligne–Lusztig varieties
XB(w±) associated to two Coxeter elements w± in the Weyl group of SO(Ω0). Here Ω0 := Λ/Λ∨ is the
quadratic space over Fp defined in Definition 2.7.1. In particular, the k-variety pZ\BTΛ only depends on
the quadratic space Ω0.

Let us recall the definition of XB(w±). Let d = tΛ/2. Let 〈·, ·〉 be the bilinear pairing on Ω0. Since Ω0 is a
non-degenerate non-split quadratic space over Fp (§2.7), one can choose a basis e1, . . . , ed, fd, . . . , f1 of Ω such
that 〈ei, fi〉 = 1 and all other pairings between the basis vectors are 0, and Φ fixes ei, fi for i = 1, . . . , d− 1

and interchanges ed with fd. This choice of basis gives a maximal Φ-stable torus T ⊆ SO(Ω) (diagonal under
this basis), and a Φ-stable Borel subgroup B ⊇ T as the common stabilizer of the two complete isotropic
flags

F± : 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, . . . , ed−1, e
±
d 〉,

where e+
d := ed and e−d := fd. Let si (i = 1, . . . , d − 2) be the reflection ei ↔ ei+1, fi ↔ fi+1 and let

t± be the reflection ed−1 ↔ e±d , fd−1 ↔ e∓d . Then the Weyl group W (T ) = N(T )/T is generated by
s1, · · · , sd−2, t

+, t−. We also know that W (T ) sits in a split exact sequence

0→ (Z/2Z)d−1 →W (T )→ Sd → 0.

Since Φ fixes si and swaps t+ and t−, we know the d − 1 elements s1, . . . , sd−2, t
+ (resp. s1, . . . , sd−2, t

−)
form a set of representatives of Φ-orbits of the simple reflections. Therefore

w± := t∓sd−2 · · · s2s1 ∈W (T )

are Coxeter elements of minimal length. The Deligne–Lusztig variety associated to B and the Coxeter
element w± is defined to be

XB(w±) := {g ∈ SO(Ω)/B : inv(g,Φ(g)) = w±},
10



where inv(g, h) ∈ B\SO(Ω)/B ∼= W (T ) is the relative position between the two Borels gBg−1 and hBh−1.
The variety XB(w±) has dimension d− 1. Under the map g 7→ gF±, the disjoint union XB(w+)

∐
XB(w−)

can be identified with the variety of complete isotropic flags

F : F1 ⊆ F2 ⊆ · · · ⊆ Fd

such that Fi = Fi−1 + Φ(Fi−1) and dimk(Fd + Φ(Fd)) = d+ 1. The two components are interchanged by an
orthogonal transformation of determinant −1. Notice that such F is determined by the isotropic line F1 by

Fi = F1 + Φ(F1) · · ·+ Φi−1(F1),

and is also determined by the Lagrangian Fd by

Fi = Fd ∩ Φ(Fd) ∩ · · · ∩ Φd−i(Fd).

The bijection (2.12.1.1) induces a bijection

(2.13.0.2) pZ\BTΛ(k)
∼−→ XB(w+)(k)

∐
XB(w−)(k)

by sending a special lattice L with Λ(L) = Λ to the flag determined by the Lagrangian Fd = L/Λ∨W . This
bijection is the restriction of the isomorphism (2.9.1.1) on k-points and we obtain the desired isomorphism

(2.13.0.3) pZ\BTΛ
∼= XB(w+)

∐
XB(w−).

2.14. Special cycles.

Definition 2.14.1. For an m-tuple v = (v1, . . . , vm) of vectors in V Φ
K , define its fundamental matrix T (v) =

(〈vi, vj〉)i,j=1,...,m. We define the special cycle Z(v) ⊆ RZ to be the locus where ρ ◦ vi ◦ ρ−1 ∈ End(X),
i.e., all the quasi-endomorphisms ρ ◦ vi ◦ ρ−1 lift to actual endomorphisms on X (i = 1, . . . ,m). Similar to
Definition 2.9.1, Z(v) is a closed formal subscheme of RZ, which is the intersection RZ with the analogously
defined cycle inside RZ(X0, λ0). Since Z(v) only depends on the Zp-submodule spanZp(v) of V Φ

K , we also
write Z(spanZp(v)).

Lemma 2.14.2. Let x0 ∈ RZ(k) correspond to L under (2.11.1.1). Let v be an arbitrary Zp-submodule of
V Φ
K . Then x0 ∈ Z(v) if and only if v ⊂ ΦL, if and only if v ⊂ ΦL ∩ L.

Proof. The first equivalence follows from Lemma 2.11.2. The second equivalence holds because v is Φ-
invariant. �

Definition 2.14.3. When m = n and T (v) is non-singular, we obtain a lattice

L(v) = Zpv1 + · · ·Zpvn ⊆ V Φ
K .

By the Cartan decomposition, T (v) ∈ GLn(Zp) diag(pr1 , pr2 , · · · , prn) GLn(Zp) for a unique non-increasing
sequence of integers r1 ≥ · · · ≥ rn. Note that if we view the matrix T (v)−1 as a linear operator V Φ

K → V Φ
K

using the basis v, it sends v to the dual basis of v, and in particular it sends any Zp-basis of L(v) to a
Zp-basis of L(v)∨. Therefore the tuple (r1, · · · , rn) is characterized by the condition that there is a basis
e1, . . . , en of L(v) such that p−r1e1, . . . , p

−rnen form a basis of L(v)∨. From this characterization we also
see that the tuple (r1, · · · , rn) is an invariant only depending on the lattice L(v). We say v is minuscule if
T (v) is non-singular and r1 = 1, rn ≥ 0.

Lemma 2.14.4. Suppose m = n and T (v) is non-singular. Then v is minuscule if and only if L(v)∨ is a
vertex lattice. In this case Z(v) = RZL(v)∨ .

Proof. The statements immediately follow from definition. �
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3. The intersection problem and the point-counting formula

3.1. The GSpin Rapoport–Zink subspace. From now on we assume n ≥ 4. Suppose the last basis
vector xn ∈ V has norm 1. Then the quadratic subspace of dimension n− 1

V [ = Zpx1 + · · ·Zpxn−1

is also self-dual. Let G[ = GSpin(V [). Analogously we define the element

b[ = x3(p−1x1 + x2) ∈ G[(Qp)

and the cocharacter

µ[ : Gm → G[, t 7→ t−1x1x2 + x2x1.

As in §2.4, we have an associated GSpin Rapoport–Zink space

RZ[ = RZ(G[, b[, µ[, C(V [)).

The embedding V [ ↪→ V induces an embedding of Clifford algebras C(V [) ↪→ C(V ) and a closed embedding
of group schemes G[ ↪→ G over Zp, which maps b[ to b and µ[ to µ. Thus by the functoriality of Rapoport–
Zink spaces ([Kim13, 4.9.6]), we have a closed immersion

δ : RZ[ ↪→ RZ

of formal schemes over W .

3.2. Relation with the special divisor Z(xn). For compatible choices of symplectic forms ψ[ on C(V [)

and ψ on C(V ), the closed embedding of group schemes GSp(C(V [), ψ[) ↪→ GSp(C(V ), ψ) induces a closed
immersion of symplectic Rapoport–Zink spaces (§2.4)

φ : RZ(X[0, λ[0) ↪→ RZ(X0, λ0).

Since we have a decomposition of GSp(C(V [), ψ[)-representations

C(V ) ∼= C(V [)⊕ C(V [)xn,

we know the moduli interpretation of φ is given by sending a triple (X[, ρ[, λ[) to the p-divisible group
X = X[ ⊕X[ with the quasi-isogeny ρ = ρ[ ⊕ ρ[ and polarization λ = λ[ ⊕ λ[.

By the functoriality of Rapoport–Zink spaces ([Kim13, 4.9.6]), we have a commutative diagram of closed
immersions

(3.2.0.1) RZ[
� � δ //� _

��

RZ� _

��
RZ(X[0, λ[0)

� � φ // RZ(X0, λ0).

Here the two vertical arrows are induced by the closed immersions GSpin(V [) ↪→ GSp(C(V [), ψ[) and
GSpin(V ) ↪→ GSp(C(V ), ψ) (§2.4).

Lemma 3.2.1. Diagram (3.2.0.1) is Cartesian, i.e., we have

(3.2.1.1) δ(RZ[) = φ(RZ(X[0, λ[0)) ∩ RZ

inside RZ(X0, λ0).
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Proof. By flat descent, to show that the closed formal subschemes on the two sides of (3.2.1.1) agree, it suffices
to show that they have the same k-points and the same formal completion at every k-point (cf. [BP17, 5.2.7]).
The claim then follows from the observation that both the k-points and the formal completions have purely
group theoretic description.

In fact, the k-points of RZ[ = RZG[ , RZ(X[0, λ[0) = RZH and RZ = RZG have the group theoretic
description as the affine Deligne–Lusztig sets (2.11.1.2) associated to the groups G[ = GSpin(V [), H =

GSp(C(V [), ψ[) and G = GSpin(V ) respectively. Since G[ = H ∩ G inside GL(C(V )), we know that both
sides of (3.2.1.1) have the same k-points. Fix a k-point x ∈ RZ[(k), then by [HP17, 3.2.12], R̂ZG[,x can
be identified with Uµx,∧

G[
, where µx : Gm,W → G[W gives a filtration that lifts the Hodge filtration for x,

Uµx
G[
⊆ G[ is the unipotent radical of the opposite parabolic group defined by µx ([HP17, 3.1.6]) and Uµx,∧

G[

is its formal completion along its identity section over W . Similarly, we can identify R̂ZH,x and R̂ZG,x as
Uµx,∧H and Uµx,∧G . Again because G[ = H ∩ G, we know that the formal completions at x of both sides of
(3.2.1.1) agree inside Uµx,∧GL(C(V )). �

Lemma 3.2.2. δ(RZ[) = Z(xn).

Proof. Let X[ be the universal p-divisible group over RZ[ and ρ[ be the universal quasi-isogeny. Then it
follows from the commutative diagram (3.2.0.1) that the image of (X[, ρ) under δ is given by the p-divisible
group (X[ ⊕X[, ρ[ ⊕ ρ[). Since xn has norm 1, right multiplication by xn swaps the two factors C(V [) and
C(V [)xn. It follows that the quasi-endomorphism

(ρ[ ⊕ ρ[) ◦ xn ◦ (ρ[ ⊕ ρ[)−1 : (X[ ⊕X[)→ (X[ ⊕X[)

(uniquely determined by the rigidity of quasi-isogenies) simply swaps the two factors, which is an actual
endomorphism (i.e., swapping) of X[ ⊕X[. By Definition 2.14.1 of Z(xn), we have δ(RZ[) ⊆ Z(xn).

Conversely, over Z(xn) the universal p-divisible group X admits an action of C(xn)op ⊗ C(V ), where
C(xn) is the Clifford algebra of the rank one quadratic space Zpxn. Notice

C(xn)op ⊗ C(V ) ∼= (C(xn)op ⊗ C(xn))⊕ (C(xn)op ⊗ C(V [)).

It follows that over Z(xn) the universal p-divisible group X admits an action of C(xn)op ⊗ C(xn), which is
isomorphic to the matrix algebra M2(Zp). The two natural idempotents of M2(Zp) then decomposes X as
a direct sum of the form X[ ⊕ X[. Hence Z(xn) ⊆ φ(RZ(X[0, λ[0)) ∩ RZ. The latter is equal to δ(RZ[) by
(3.2.1.1) and hence Z(xn) ⊆ δ(RZ[). �

Remark 3.2.3. In the following we will only use the inclusion δ(RZ[) ⊆ Z(xn).

3.3. Arithmetic intersection of GGP cycles.

Definition 3.3.1. The closed immersion δ induces a closed immersion of formal schemes

(id, δ) : RZ[ → RZ[×W RZ .

Denote by ∆ the image of (id, δ), which we call the GGP cycle.

The embedding V [ ↪→ V also induces an embedding of quadratic spaces V [,ΦK ↪→ V Φ
K and hence we can

view
Jb[ = GSpin(V [,ΦK ) ↪→ Jb

as an algebraic subgroup over Qp.
For any g ∈ Jb(Qp), we obtain a formal subscheme

g∆ := (id×g)∆ ⊆ RZ[×W RZ,
13



via the action of g on RZ. Our goal is to compute the arithmetic intersection number

〈∆, g∆〉,

when g is regular semisimple and minuscule.

Definition 3.3.2. We say g ∈ Jb(Qp) is regular semisimple if the v(g) := (xn, gxn, . . . , g
n−1xn) forms a

Qp-basis of V Φ
K . Equivalently, the fundamental matrix T (g) := T (v(g)) is non-singular (Definition 2.14.1).

We say g is minuscule if v(g) is minuscule (Definition 2.14.3).

3.4. Fixed points. Let g ∈ Jb(Qp) and let RZg ⊆ RZ be the fixed locus of g. Then by definition we have

∆ ∩ g∆ ∼= δ(RZ[) ∩ RZg .

Definition 3.4.1. Let g ∈ Jb(Qp) be regular semisimple. We define the lattice

L(g) := Zpxn + · · ·Zpgn−1xn ⊆ V Φ
K .

Lemma 3.4.2. Inside RZ both the formal subschemes RZg and δ(RZ[) are stable under pZ. Moreover, under
the bijection (2.11.1.1), we have

(1) pZ\δ(RZ[(k)) ∼= {L = L[ ⊕Wxn : L[ ⊆ V [K special lattices}.
(2) pZ\δ(RZ[(k)) ∼= {L special lattices : xn ∈ L}.
(3) pZ\RZg(k) ∼= {L special lattices : gL = L}.
(4) pZ\(δ(RZ[(k)) ∩ RZg(k)) ∼= {L special lattices : gL = L,L ⊇ L(g)W }.

Proof. Since pZ is central in Jb(Qp), we know RZg is stable under pZ. The morphism δ : RZ[ → RZ is
equivariant with respect to the natural inclusion Jb[(Qp)→ Jb(Qp), and the morphism Jb[ → Jb restricts to
the identity between the centers Gm of Jb[ and of Jb. It follows that δ is equivariant for the pZ action, and
so δ(RZ[) is stable under pZ. We now prove the statements (1) to (4).

(1) For a point L[ ∈ pZ\RZ[(k), we can write L[ = h[µ[(p−1).V [W ⊆ V [K , for some h[ ∈ G[(K). Then its
image under δ is given by L = hµ(p−1).VW ⊆ VK , where h is the image of h[ in G(K). By V = V [⊕Zpxn
and the compatibility between h, µ and h[, µ[, we know that L = L[ ⊕Wxn.

(2) Suppose L is a special lattice with xn ∈ L. Since xn has norm 1, we know that L = L′ ⊕Wxn is the
direct sum of Wxn and its orthogonal complement L′ in L. One can check L′ ⊆ V [K is also a special
lattice. This finishes the proof in view of item (1).

(3) This is clear since RZg(k) is the fixed locus of g.
(4) For a point L ∈ pZ\(δ(RZ[(k)) ∩ RZg(k)), by items (1) (3), we have L = L[ ⊕Wxn and gL = L. It

follows from xn ∈ L that gxn, . . . , gn−1xn ∈ L, and so L ⊇ L(g)W . Conversely, if a point L ∈ RZ(k)

satisfies gL = L and L ⊃ L(g)W , then L ∈ pZ\(δ(RZ[(k)) ∩ RZg(k)) by items (2) and (3) �

Definition 3.4.3. We say a vertex lattice Λ is a g-vertex lattice if gΛ = Λ and Λ ⊆ L(g)∨. Denote the set
of all g-vertex lattices by VL(g). In general, if a vertex lattice Λ satisfies gΛ = Λ, then g induces an action
on Ω0 = Λ/Λ∨, which further induces an action ḡ on RZred

Λ and BTΛ. We denote the fixed locus of ḡ on
BTΛ by BTḡΛ.

Proposition 3.4.4.

pZ\(δ(RZ[) ∩ RZg)(k) =
∐

Λ∈VL(g)

pZ\BTḡΛ(k).
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Proof. By Lemma 3.4.2, it suffices to show the k-points of the right hand side are in bijection with special
lattices L such that gL = L and L ⊇ L(g)W . Notice that any special lattice L is self-dual, so the condition
L ⊇ L(g)W is equivalent to the condition L ⊆ L(g)∨W . Since Λ(L)W is the minimal Φ-invariant lattice
containing L (§2.12), and L(g)∨W is Φ-invariant, we know that the condition L ⊆ L(g)∨W is equivalent to the
condition Λ(L) ⊆ L(g)∨. The result now follows from taking ḡ-invariants and g-invariants of the two sides
of the bijection (2.12.1.1). �

3.5. Fixed points in a Bruhat–Tits stratum. Let Λ be a vertex lattice and Ω0 = Λ/Λ∨ (§2.7). By
the isomorphism (2.13.0.3), pZ\BTΛ is disjoint union of two isomorphic Deligne–Lusztig varieties XB(w±)

associated to the Coxeter elements w± for SO(Ω0). Write X := XB(w±). To compute pZ\BTḡΛ, it suffices
to compute the ḡ-fixed points X ḡ.

Definition 3.5.1. We say a semisimple element ḡ ∈ SO(Ω0) is regular if Z◦(ḡ), the identity component of
the centralizer of ḡ in SO(Ω0), is a (necessarily maximal) torus3.

Proposition 3.5.2. Let Λ be a vertex lattice and let ḡ ∈ SO(Ω0)(Fp).
(1) X ḡ is non-empty if and only if ḡ is semisimple and contained in a maximal torus of Coxeter type.
(2) X ḡ is non-empty and finite if and only if ḡ is regular semisimple and contained in a maximal torus of

Coxeter type. In this case, the cardinality of X ḡ is given by tΛ/2.

Remark 3.5.3. Recall that a maximal torus T ′ is of Coxeter type if T ′ = hTh−1 for some h ∈ SO(Ω0)

such that h−1Φ(h) lifts to a Coxeter element w in the Weyl group W (T ) = N(T )/T . In other words, T ′

is conjugate to T over k but its Frobenius structure is given by w · Φ. For the Coxeter element w = w±

constructed in §2.13, we know that an element (λ1, . . . , λd, λ
−1
d , . . . , λ−1

1 ) of T (k) is fixed by w ·Φ if and only
if

(λ1, λ2, . . . , λd−1, λd) = (λ∓pd , λp1 . . . , λ
p
d−2, λ

±p
d−1).

It follows that a semisimple element ḡ ∈ SO(Ω0)(Fp) is contained in a maximal torus of Coxeter type if and
only if the eigenvalues of ḡ on Ω0 ⊗ k belong to a single Galois orbit.

Proof. (1) Suppose X ḡ is non-empty. Then it is a general fact about Deligne–Lusztig varieties that ḡ must
be semisimple ([Lus11, 5.9 (a)]). Let T (w) ⊆ SO(Ω0) be a torus of Coxeter type (associated to w = w+

or w−) and B(w) ⊇ T (w) be a Borel. Assume ḡ is semisimple. Then we know from [DL76, Proposition
4.7] that X ḡ is a disjoint union of Deligne-Lusztig varieties XT ′⊆B′ for the group G′ = Z◦(ḡ) and the
pairs

(T ′, B′) = (hT (w)h−1, hB(w)h−1 ∩G′),
where h runs over classes G′(Fp)\ SO(Ω0)(Fp) such that ḡ ∈ hT (w)h−1. Therefore X ḡ is non-empty
if and only if there exists h ∈ SO(Ω0)(Fp) such that ḡ ∈ hT (w)h−1, if and only if ḡ is contained in a
maximal torus of Coxeter type (as so is T (w)).

(2) By part (1) we know that X ḡ is further finite if and only if all XT ′⊆B′ are zero dimensional, if and only
if all B′ = hBh−1 ∩G′ are tori. This happens exactly when G′ = Z◦(ḡ) itself is a torus, i.e., when ḡ is
regular. In this case, G′ is a maximal torus of Coxeter type in SO(Ω0) and the cardinality of X ḡ is equal
to the cardinality of N(T (w))(Fp)/T (w)(Fp). The latter group is isomorphic to (N(T (w))/T (w))Φ by
Lang’s theorem and hence is isomorphic to the Φ-twisted centralizer of w in the Weyl group W (T ) =

N(T )/T :
ZΦ(w) := {x ∈W (T ) : xw = wΦ(x)}.

3Note the difference with Definition 3.3.2. The conflict of the usage of the word "regular" should hopefully not cause
confusion.
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The cardinality of ZΦ(w) is known as the Coxeter number of the group SO(Ω0), which is equal to
d = tΛ/2 since SO(Ω0) is a non-split even orthogonal group ([Lus77, 1.15]). �

3.6. Point-counting in the minuscule case. Let g ∈ Jb(Qp) be regular semisimple and minuscule. Then
Ω0(g) := L(g)∨/L(g) is a Fp-vector space (see Definition 2.14.3), and hence L(g)∨ is a vertex lattice.

Remark 3.6.1. If RZg is non-empty, then g fixes some vertex lattice and so we know that the characteristic
polynomial of g has Zp-coefficients. It follows that L(g) is a g-stable lattice, from which it also follows
easily that L(g)∨ is g-stable. Hence by definition L(g)∨ is a g-vertex lattice. The induced action of g on
Ω0(g), denoted by ḡ ∈ SO(Ω0(g))(Fp), makes Ω0(g) a ḡ-cyclic Fp-vector space. It follows that the minimal
polynomial of ḡ is equal to its characteristic polynomial.

From now on we assume RZg is non-empty. Let ḡ ∈ SO(Ω0(g))(Fp) be as in Remark 3.6.1.

Definition 3.6.2. For any polynomial R(T ), we define its reciprocal to be

R∗(T ) := T degR(T ) ·R(1/T ).

We say R(T ) is self-reciprocal if R(T ) = R∗(T ).

Definition 3.6.3. Let P (T ) ∈ Fp[T ] be the characteristic polynomial of ḡ ∈ SO(Ω0(g)). Then P (T ) is
self-reciprocal. For any monic irreducible factor Q(T ) of P (T ), we denote by m(Q(T )) to be the multiplicity
of Q(T ) appearing in P (T ).

Theorem 3.6.4. Assume RZg is non-empty. Then pZ\(δ(RZ[) ∩ RZg)(k) is non-empty if and only if
P (T ) has a unique self-reciprocal monic irreducible factor Q(T ) such that m(Q(T )) is odd. In this case,
pZ\(δ(RZ[) ∩ RZg)(k) is finite and has cardinality

degQ(T ) ·
∏
R(T )

(1 +m(R(T ))),

where R(T ) runs over all non-self-reciprocal monic irreducible factors of P (T ).

Proof. By Proposition 3.4.4, we know that pZ\(δ(RZ[) ∩ RZg)(k) is non-empty if and only if pZ\BTgΛ is
non-empty for some Λ ∈ VL(g). For any Λ ∈ VL(g), by definition we have a chain of inclusions of lattices

L(g) ⊆ Λ∨ ⊆ Λ ⊆ L(g)∨,

which induces a filtration of Fp-vector spaces,

0 ⊆ Λ∨/L(g) ⊆ Λ/L(g) ⊆ Ω0(g).

It follows that the map Λ 7→ Λ∨/L(g) gives a bijection

(3.6.4.1) VL(g) ∼= {totally isotropic ḡ-invariant subspaces U ⊆ Ω0(g)}.

By the bijection (3.6.4.1), VL(g) is non-empty if and only if there is a totally isotropic ḡ-invariant subspace
U of Ω0(g). Such a subspace U induces a filtration

(3.6.4.2) 0 ⊆ U ⊆ U⊥ ⊆ Ω0(g).

Since U and U⊥ are ḡ-invariant, we obtain a decomposition of the characteristic polynomial

(3.6.4.3) P (T ) = P1(T )Q(T )P2(T )

where P1(T ), Q(T ), P2(T ) are respectively the characteristic polynomials of ḡ acting on the associated graded
U , U⊥/U and Ω0(g)/U⊥. Notice the non-degenerate quadratic form on Ω0(g) identifies Ω0(g)/U⊥ with the
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linear dual of U , from which we know that P2(T ) = P ∗1 (T ). Similarly, we know that Q(T ) = Q∗(T ), i.e.,
Q(T ) is self-reciprocal.

Let Λ = L(g) + U⊥ be the g-vertex lattice corresponding to U under the bijection (3.6.4.1) and let
Ω0 = Λ/Λ∨ and ḡ0 ∈ SO(Ω0)(Fp) be the induced action of ḡ on Ω0. Since the minimal polynomial of ḡ
is equal to its characteristic polynomial P (T ) (Remark 3.6.1), we know the minimal polynomial of ḡ0 is
equal to its characteristic polynomial Q(T ) under the decomposition (3.6.4.3). If ḡ0 is semisimple, then its
eigenvalues are distinct. If ḡ is further contained in a torus of Coxeter type, then we know that its eigenvalues
belong to a single Galois orbit (Remark 3.5.3), so Q(T ) is irreducible. Conversely, if Q(T ) is irreducible,
then clearly ḡ0 is semisimple and contained in a torus of Coxeter type. Hence we know that ḡ0 is semisimple
and contained in a torus of Coxeter type if and only if Q(T ) is irreducible.

Therefore by Proposition 3.5.2 (1), BTḡ0

Λ is non-empty if and only if Q(T ) is irreducible. In this case,
ḡ0 is indeed regular semisimple and the cardinality of pZ\BTḡ0

Λ is equal 2 · #X ḡ0 (due to two connected
components), which is equal to dimFp Ω0 = degQ(T ) by Proposition 3.5.2 (2).

Since P2(T ) = P ∗1 (T ), we know the multiplicity of R(T ) in P1(T )P2(T ) is even for any self-reciprocal
factor R(T ). Hence Q(T ) is the unique self-reciprocal monic irreducible factor of P (T ) such that m(Q(T ))

is odd. Finally, the factorizations (3.6.4.3) with P2(T ) = P ∗1 (T ) corresponds bijectively to the filtrations
(3.6.4.2). Notice such factorization is given by a choice of the polynomial

P1(T ) =
∏

R(T ) 6=R∗(T )

R(T )e(R(T )) ·
∏

R(T )=R∗(T )

R(T )bm(R(T ))/2c,

where R(T ) runs over all monic irreducible factors of P (T ) and 0 ≤ e(R(T )) ≤ m(R(T )). So the total
number of such factorization is exactly given by∏

R(T )6=R∗(T )

(1 +m(R(T ))).

The proof is finished. �

4. The reducedness of minuscule special cycles

4.1. The analogue of a result of Madapusi Pera on special cycles.

Definition 4.1.1. Let O be an arbitrary Z[1/2]-algebra. Assume O is local. Let L be a finite free O-module
equipped with the structure of a self-dual quadratic space over O. By an isotropic line in L we mean a direct
summand of rank one on which the quadratic form is zero.

We start with a general lemma on Clifford algebras.

Lemma 4.1.2. Let O and L be as in Definition 4.1.1. Let C(L) be the associated Clifford algebra. Let
ξ ∈ L be an O-generator of an isotropic line. Let ker(ξ) be the kernel of the endomorphism of C(L) given
by left multiplication by ξ. Then for any v ∈ L, left multiplication by v preserves ker(ξ) if and only if v is
orthogonal to ξ.

Proof. Assume v is orthogonal to ξ. Then vξ = −ξv, so v preserves ker(ξ).
Conversely, assume v preserves ker(ξ). Write q for the quadratic form and 〈, 〉 the corresponding bilinear

pairing. Since Oξ is a direct summand of L, there exists an O-module homomorphism L → O sending ξ
to 1. Since L is self-dual, we know that there exists ζ ∈ L representing such a homomorphism. Namely we
have

〈ζ, ξ〉 = 1.
17



It immediately follows that we have an O-module direct sum L = ξ⊥ ⊕ Oζ. Replacing ζ by ζ − q(ζ)
2 ξ, we

may arrange that ζ is isotropic. We have

q(ζ + ξ) = 2〈ζ, ξ〉 = 2,

and in C(L) we have

q(ζ + ξ) = ζξ + ξζ.

Hence in C(L) we have

ξζ + ζξ = 2(4.1.2.1)

Write

v = v1 + λζ,

with v1 ∈ ξ⊥ and λ ∈ O. By the first part of the proof we know that v1 preserves ker(ξ). Therefore λζ
preserves ker(ξ). Note that ξ ∈ ker(ξ) as ξ is isotropic. It follows that, in C(L),

0
λζ preserves ker(ξ)

=============== ξ(λζ)ξ
(4.1.2.1)

======= λ(2− ζξ)ξ ξ isotropic
========== 2λξ.

This is possible only when λ = 0, and hence we have v = v1 ∈ ξ⊥. �

The next result is a Rapoport–Zink space analogue of [MP16, Proposition 5.16] which is in the context of
special cycles on GSpin Shimura varieties. We only state a weaker analogue as it is sufficient for our need.
The proof builds on loc. cit. too. We first introduce some definitions.

Definition 4.1.3. Denote by y00 the distinguished k-point of RZ corresponding to X0 and the identity
quasi-isogeny. Let y0 ∈ RZ(k) be an arbitrary element. Let L be the special lattice corresponding to y0

under (2.11.1.1). When y0 = y00, we have ΦL = VW (cf. the discussion below (2.11.1.1)). In this case
define Fil1(ΦL)k to be the one-dimensional subspace of Vk defined by the cocharacter µ of GW and the
representation Gk → GL(Vk). For general y0, let g ∈ XG,b,µσ (k) be associated to y0. Then ΦL = gVW and
g induces a map Vk → (ΦL)k (cf. loc. cit.). Define Fil1(ΦL)k to be the image of Fil1 Vk under the last map.

Remark 4.1.4. By our explicit choice of µ in §2.3, the submodule Zpx2 in V is of weight 1 with respect to
µ, and ⊕1≤i≤n,i6=2Zpxi is of weight 0 with respect to µ, so Fil1 Vk = kx2.

Remark 4.1.5. In fact, Fil1(ΦL)k is the orthogonal complement in (ΦL)k of (L ∩ΦL)k. In the sequel we do
not need this description, although one could use this description to give an alternative proof of Corollary
4.1.8 below.

Definition 4.1.6. Let C be the category defined as follows:

• Objects in C are triples (O,O → k, δ), where O is a local artinian W -algebra, O → k is a W -algebra map,
and δ is a nilpotent divided power structure on ker(O → k).

• Morphisms in C are W -algebra maps that are compatible with the structure maps to k and the divided
power structures.

In the following we will abuse notation to write O for an object in C .

Let y0 ∈ RZ(k) be an arbitrary element. Let v be as in Definition 2.14.1 such that the special cycle
Z := Z(v) contains y0. In particular v ⊂ L ∩ ΦL by Lemma 2.14.2. Let R̂Zy0 and Ẑy0 be the formal
completions of RZ and Z at y0 respectively.
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Theorem 4.1.7. For any O ∈ C there is a bijection

fO : R̂Zy0
(O)

∼−→
{
isotropic lines in (ΦL)O := ΦL⊗W O lifting Fil1(ΦL)k

}
such that the following properties hold. Here we equip (ΦL)O with the O-bilinear form obtained by extension
of scalars of the W -bilinear form on ΦL.

(1) fO is functorial in O ∈ C in the following sense. Let O′ ∈ C be another object of C and let φ : O → O′

be a morphism in C . Then we have a commuting diagram.

R̂Zy0
(O)

fO

��

// R̂Zy0(O′)

fO′

��
im(fO) // im(fO′)

Here the top horizontal map is the natural map induced by φ, and the bottom horizontal map is given by
base change along φ.

(2) fO restricts to a bijection
fO,v : Ẑy0(O)

∼−→{
isotropic lines in (ΦL)O lifting Fil1(ΦL)k and orthogonal to the image of v in (ΦL)O

}
Proof. The existence and construction of the bijection fO and the property (1) are consequences of [MP16,
Proposition 5.16] and the global construction of RZ in [HP17] using the integral model of the GSpin Shimura
variety. We explain this more precisely below.

Consider
S = SUpUp ,

the canonical integral model over Z(p) of the Shimura variety associated to the GSpin Shimura datum
associated to a quadratic space VQ over Q, at a suitable level Up away from p and a hyperspecial level Up
at p. See [HP17, §7] or [MP16] for more details on this concept. By [HP17, 7.2.3], we may assume that the
following package of data:

• the Shimura datum associated to VQ,
• the Kuga-Satake Hodge embedding (cf. [HP17, 4.14]) of the Shimura datum into a GSp Shimura datum,
• the chosen hyperspecial level at p,
• an element x00 ∈ lim←−Up SUpUp(k),

induces, in the fashion of [HP17, 3.1.4], the local unramified Shimura-Hodge datum that we used to define
RZ. Let Ŝ be the formal scheme over Zp obtained from p-adic completion of S , and let ŜW be the base
change to W of Ŝ . Then as in [HP17, 3.2.14], we have a morphism of formal schemes over W :

Θ : RZ→ ŜW .

We know that Θ maps y00 to the k-point of ŜW induced by x00. Moreover, let

x0 := Θ(y0) ∈ ŜW (k) = S (k)

and let Û be the formal completion of S at x0 (or, what amounts to the same thing, the formal completion of
ŜW at x0). By the construction of RZ in [HP17, §3], we know that Θ induces an isomorphism R̂Zy0

∼−→ Û .
In [MP16], two crystals Hcris,Lcris are constructed on Sk. (In fact [MP16] works over Fp, but we always

base change from Fp to k.) Here Hcris is by definition the first relative crystalline cohomology of the Kuga-
Satake abelian scheme over Sk in the sense of loc. cit.4The specialization of Hcris over Spec k via x00 is

4See footnote 5.
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identified with the Dieudonné module CW , which is the covariant Diedonné module of the p-divisible group
X0 considered in this article (and [HP17]) and the contravariant Diedonné module of the Kuga-Satake abelian
variety at x00 considered in [MP16].5 Moreover, the embedding V ↪→ EndZp(C) has a cristalline realization,
which is a sub-crystal Lcris of End(Hcris). For details see [MP16, §4]. Among others, Lcris has the following
structures:

• Its specialization Lcris,x0
to any x0 ∈ S (k), viewed as a W -module, has the structure of a W -quadratic

space.
• Lcris,x0 ⊗W k contains a canonical isotropic line Fil1(Lcris,x0 ⊗W k).

By the definition of Θ and the definition of the parametrization of RZ(k) by the affine Deligne-Lusztig
set (cf. [HP17, §2.4]), we know that when y0 ∈ RZ(k) corresponds to the special lattice L under (2.11.1.1),
the following statements are true:

(a) There is an isomorphism of Dieudonné modules (gC)W
∼−→ Hcris,x0

.
(b) There is a W -linear isometry (ΦL)W

∼−→ Lcris,x0 under which Fil1(ΦL)k is identified with

Fil1(Lcris,x0
⊗W k).

(c) We have a commutative diagram:

ΦL �
� //

��

EndW ((gC)W )

��
Lcris,x0

� � // EndW (Hcris,x0),

where
• the right vertical map is induced by the map in (a).
• the left vertical map is the map in (b).
• the bottom horizontal map arises from the fact that Lcris is a sub-crystal of End(Hcris).

In the rest of the proof we make the identifications in (a) and (b) above and omit them from the notation.
Abbreviate H := Hcris,x0

and L := Lcris,x0
.

Now in [MP16, Proposition 5.16] Madapusi Pera constructs a bijection

Û(O)
∼−→
{
isotropic lines in LO := L⊗W O lifting Fil1 Lk

}
.

Moreover by the construction given in loc. cit. the above bijection is functorial in O ∈ C . We define fO as
the above bijection precomposed with the isomorphism Θ : R̂Zy0

∼−→ Û .
It remains to prove property (2). Note thatH = gCW is the covariant Dieudonné module of the p-divisible

group Xy0
over k determined by y0 ∈ RZ(k). Given y ∈ R̂Zy0

(O) lifting y0, by Grothendieck-Messing theory
(for covariant Dieudonné modules) we know that y ∈ Ẑy0

if and only if the image of v in EndO(HO) stabilizes
Fil1 HO ⊂ HO, where Fil1 HO is the Hodge filtration corresponding to the deformation from k to O of the
Xy0 determined by y. Now, as is stated in the proof of [MP16, Proposition 5.16]6, we know that Fil1 HO is
the kernel in HO of any O-generator ξ of the isotropic line fO(y). Here ξ ∈ LO is viewed as an element of
EndO(HO). By Lemma 4.1.2, v preserves Fil1 HO = ker ξ if and only if v is orthogonal to ξ (inside LO).
Thus y ∈ Ẑy0

if and only if fO(y) is orthogonal to the image of v in LO = (ΦL)O.

5Due to different conventions, the Kuga-Satake abelian scheme (and p-divisible group) considered by Madapusi Pera in
[MP16] is different from that considered by Howard-Pappas in [HP17]. In fact they are dual to each other.

6Madapusi Pera defines Fil1 HO using the contravariant Grothendieck-Messing theory of the p-divisible group of the Kuga-
Satake abelian scheme in his sense, which is the same as the covariant Grothendieck-Messing theory of the p-divisible group
over Û transported via Θ from the universal p-divisible group over RZ in the sense of Howard-Pappas.
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Corollary 4.1.8. Fil1(ΦL)k is orthogonal to the image of v in (ΦL)k.

Proof. Consider the bijection fO,v in Theorem 4.1.7 (2), for O = k. Since the source of this bijection is
non-empty, so is its target. The corollary then follows. �

4.2. Reducedness of minuscule special cycles.

Proposition 4.2.1. Let Λ be a Zp-lattice in V Φ
K with piΛ ⊂ Λ∨ ⊂ Λ for some i ∈ Z≥1. (Equivalently, Λ∨

has invariant (r1, · · · , rn) such that i ≥ r1 ≥ r2 ≥ · · · ≥ rn ≥ 0.) Then the special cycle Z(Λ∨) defined by
Λ∨ has no (W/pi+1)-points. In particular, taking i = 1 we see that RZΛ(W/p2) = ∅ for any vertex lattice
Λ, or equivalently Z(v)(W/p2) = ∅ for any minuscule v.

Proof. Suppose there exists x ∈ Z(Λ∨)(W/pi+1). Let x0 ∈ Z(Λ∨)(k) be induced by x under the reduction
map W/pi+1 → W/p = k. Under (2.11.1.1) x0 determines a special lattice L. By Lemma 2.14.2, Λ∨W ⊂
L ∩ ΦL. Note that W/pi+1 → k is a surjection whose kernel admits nilpotent divided powers. By Theorem
4.1.7, the existence of the lift x of x0 implies that there exists an isotropic line L (overW/pi+1) in (ΦL)W/pi+1

lifting Fil1(ΦL)k and such that L is orthogonal to the image of Λ∨ in (ΦL)W/pi+1 . Let l ∈ ΦL be a
lift of a generator of L. Then 〈l, λ〉 ∈ pi+1W for all λ ∈ Λ∨. It follows that p−(i+1)l ∈ ΛW . Hence
p−1l ∈ piΛW ⊂ (Λ∨)W ⊂ ΦL, i.e. l ∈ pΦL. This contradicts with the fact that L maps to a non-zero line in
(ΦL)k. �

4.2.2. Let u ∈ V Φ
K − {0}. Suppose x0 ∈ Z(u)(k). Let T = k[ε]/ε2 be the ring of dual numbers over k. We

equip T with the map T → k, ε 7→ 0, which has its kernel (ε) admitting nilpotent divided powers (in a unique
way). Thus Theorem 4.1.7 can be applied to O = T .

Let Tx0 RZk and Tx0Z(u)k be the tangent spaces at x0 to RZk = RZ×Spf W Spec k and to Z(u)k =

Z(u)×Spf W Spec k respectively. We will always take the point of view that Tx0 RZk is the preimage of {x0}
under the reduction map RZ(T ) → RZ(k). Similarly for Tx0

Z(u)k. We compute Tx0
RZk and Tx0

Z(u)k

explicitly in the following. The result is given in Corollary 4.2.7.
Let L be the special lattice associated to x0 under (2.11.1.1). Since x0 ∈ Z(u)(k), we have u ∈ L ∩ ΦL

by Lemma 2.14.2. Let ū be the image of u in (ΦL)k. Let Fil1(ΦL)k be as in Definition 4.1.3. By Corollary
4.1.8 we know that ū is orthogonal to Fil1(ΦL)k.

Define D to be the set of isotropic lines in (ΦL)T lifting Fil1(ΦL)k. Define Du to be the subset of D

consisting of lines which are in addition orthogonal to the image of u in (ΦL)T . Let

G = fT : Tx0
RZk

∼−→ D .(4.2.2.1)

be the bijection given in Theorem 4.1.7. By the same theorem it restrict to a bijection

Tx0
Z(u)k

∼−→ Du.

Definition 4.2.3. We identify (ΦL)T with (ΦL)k ⊗k T . Fix a k-generator v0 of Fil1(ΦL)k. Define a map

F̃ : (ΦL)k → {T -submodules of (ΦL)T }

w 7→ spanT {v0 ⊗k 1 + w ⊗k ε} .

Lemma 4.2.4. F̃ factors through (ΦL)k/Fil1(ΦL)k, and its image consists of T -module direct summands
of (ΦL)T of rank one.
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Proof. For any λ ∈ k, we have

v0 ⊗ 1 + (w + λv0)⊗ ε = (1 + λε)(v0 ⊗ 1 + w ⊗ ε),

and 1 + λε ∈ T×. Hence F̃ factors through (ΦL)k/Fil1(ΦL)k. For any w ∈ (ΦL)k, we know that F̃ (w) is a
free module of rank one by definition. It remains to show that F̃ (w) is a direct summand of (ΦL)T . Let A
be a k-vector space complement of Fil1(ΦL)k inside (ΦL)k. We easily check that the following T -submodule
of (ΦL)T is a T -module complement of F̃ (w):

spanT {v′ ⊗ 1 + w ⊗ ε|v′ ∈ A} .

�

Corollary 4.2.5. The map F̃ induces a bijection of sets:

F : (Fil1(ΦL)k)⊥/Fil1(ΦL)k
∼−→ D .

Moreover, F restricts to a bijection{
ū,Fil1(ΦL)k

}⊥
/Fil1(ΦL)k

∼−→ Du.

Proof. Since 〈v0, v0〉 = 0 ∈ k, the condition that F̃ (w) is isotropic is equivalent to 〈w, v0〉 = 0 ∈ k. Since
v0 is orthogonal to ū, the condition that F̃ (w) is orthogonal to the image of u in (ΦL)T is equivalent to
〈w, ū〉 = 0 ∈ k. �

Lemma 4.2.6. Let G be as in (4.2.2.1) and let F be as in Corollary 4.2.5. The map

G−1 ◦F : (Fil1(ΦL)k)⊥/Fil1(ΦL)k → Tx0
RZk

is k-linear.

Proof. The proof is a routine check, using the functorial property stated in Theorem 4.1.7.
We first recall the k-vector space structure on Tx0 RZk, from the point of view that Tx0 RZk is the preimage

of {x0} under the map RZ(T )→ RZ(k).
Scalar multiplication: Given a tangent vector v ∈ Tx0

RZk corresponding to vT ∈ RZ(T ) and given a
scalar λ ∈ k, the tangent vector λv corresponds to the following element (λv)T of RZ(T ): the image of vT
under RZ(T )

T→T,ε 7→λε−−−−−−−→ RZ(T ). We see that (λv)T is indeed a preimage of x0.
Addition: Let v1, v2 ∈ Tx0 RZk be two tangent vectors. Let Ti = k[εi]/ε

2
i , i = 1, 2 be two copies of T .

We represent vi as an element (vi)Ti in RZ(Ti) that reduces to x0 ∈ RZ(k), for i = 1, 2. Let T̃ be the fiber
product of T1 and T2 over k, in the category of k-algebras. Namely, T̃ = k[ε1, ε2]/(ε1, ε2)2. Let δ be the
k-algebra map

δ : T̃ → T, ε1 7→ ε, ε2 7→ ε.

By the fact that T̃ is the fiber product of T1 and T2, there is a canonical bijection

RZ(T1)× RZ(T2)
∼−→ RZ(T̃ ).(4.2.6.1)

Denote by v1+̃v2 the image of ((v1)T1
, (v2)T2

) in RZ(T̃ ) under the above bijection. Then the tangent vector
v1 + v2 corresponds to the following element (v1 + v2)T of RZ(T ): the image of v1+̃v2 under δ∗ : RZ(T̃ )→
RZ(T ). This last element is indeed a preimage of x0.

We now check that G−1◦F is k-linear. We first check the compatibility with scalar multiplication. For any
λ ∈ k and w ∈ (Fil1(ΦL)k)⊥, we have F̃ (w) = spanT {v0 ⊗ 1 + w ⊗k ε} and F̃ (λw) = spanT {v0 ⊗ 1 + λw ⊗k ε}.
Let mλ denote the map T → T, ε 7→ λε. Then we have F̃ (w) ⊗T,mλ T = F̃ (λw) as submodules of
(ΦL)T . By the functoriality in O stated in Theorem 4.1.7, we know that for all d ∈ D , the element
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G−1(d ⊗T,mλ T ) ∈ RZ(T ) is equal to the image of G−1(d) under RZ(T )
(mλ)∗−−−−→ RZ(T ). It follows that

(G−1 ◦F )(λw) is equal to λ times the tangent vector (G−1 ◦F )(w).
We are left to check the additivity of G−1◦F . Let w1, w2 ∈ (Fil1(ΦL)k)⊥. Let Di,Fi,Gi be the analogues

of D ,F ,G respectively with T replaced by Ti, for i = 1, 2. Also let fT̃ be as in Theorem 4.1.7 (with O = T̃ ,
where ker(T̃ → k) is equipped with the unique nilpotent divided power structure.) Let di := Fi(wi), i = 1, 2.
Then di = spanTi(v0⊗ 1 +wi⊗ εi). We easily see that the assertion (G−1 ◦F )(w1 +w2) = (G−1 ◦F )(w1) +

(G−1 ◦F )(w2) follows from the following claim:
Claim. Under (4.2.6.1), the element (G−1

1 (d1),G−1
2 (d2)) is sent to the element

f−1

T̃
(spanT̃ {v0 ⊗ 1 + w1 ⊗ ε1 + w2 ⊗ ε2}).

We now prove the claim. Let d̃ be such that the element (G−1
1 (d1),G−1

2 (d2)) is sent under (4.2.6.1) to
f−1

T̃
(d̃). Thus d̃ is an isotropic line in (ΦL)T̃ . By the functoriality stated in Theorem 4.1.7 and the functorial

definition of (4.2.6.1), we see that d̃ is characterized by the condition that d̃⊗T̃ Ti = di, i = 1, 2, where the
tensor product is with respect to the the structure map T̃ → Ti expressing T̃ as the fiber product of T1, T2

(i.e. reduction modulo εj for j 6= i). Using this characterization of d̃, we see that d̃ is as predicted in the
claim. �

Corollary 4.2.7. The tangent space Tx0
RZk is isomorphic to

(Fil1(ΦL)k)⊥/Fil1(ΦL)k.

Under this isomorphism, the subspace Tx0Z(u)k of Tx0 RZk is identified with{
ū,Fil1(ΦL)k

}⊥
/Fil1(ΦL)k.

Proof. This follows from Corollary 4.2.5, Lemma 4.2.6, and the bijectivity of G−1 asserted in Theorem
4.1.7. �

Lemma 4.2.8. Let Λ ⊂ V Φ
K be a vertex lattice. Let L be a self-dualW -lattice in VK such that Λ∨W ⊂ L ⊂ ΛW .

Let A be the image of Λ∨W in Lk. Then the following statements hold.

(1) dimk ΛW /L = dimk L/Λ
∨
W . Here both spaces are vector spaces over k because pΛW ⊂ Λ∨W ⊂ L and

pL ⊂ pΛW ⊂ Λ∨W .
(2) A ⊃ A⊥. Here A⊥ is the orthogonal complement of A in Lk, under the k-bilinear pairing on Lk that is

the reduction of the W -bilinear pairing on L.

Proof. (1) Consider the W -bilinear pairing

ΛW × ΛW →W

(x, y) 7→ p〈x, y〉,

where 〈, 〉 is the K-bilinear form on V Φ
K ⊗Qp K = VK . We get an induced k-quadratic space structure on

ΛW /Λ
∨
W . The image of L in ΛW /Λ

∨
W is equal to the orthogonal complement of itself, i.e. it is a Lagrangian

subspace. Claim (1) follows.
(2) By definition A⊥ is the image in Lk of the W -submodule pΛ∨∨W = pΛW of L. We have pΛW ⊂ Λ∨W ,

so A⊥ is a subset of the image of Λ∨W in Lk, which is A. �

Proposition 4.2.9. Let Λ ⊂ V Φ
K be a vertex lattice of type t (so t ≥ 2 is even). For all x0 ∈ RZΛ(k), we

have
dimk Tx0

RZΛ,k = t/2− 1.
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Proof. Let L be the special lattice associated to x0 under (2.11.1.1), and let Fil1(ΦL)k be as in Definition
4.1.3. Then Λ∨W ⊂ L ∩ ΦL. Denote by A the image of Λ∨W in (ΦL)k. Then A is orthogonal to Fil1(ΦL)k by
Corollary 4.1.8. By Corollary 4.2.7, we have an isomorphism of k-vector spaces

Tx0 RZΛ,k
∼=
{
A,Fil1(ΦL)k

}⊥
/Fil1(ΦL)k.

Since A is orthogonal to Fil1(ΦL)k, we have A ⊃ Fil1(ΦL)k by Lemma 4.2.8 applied to the self-dualW -lattice
ΦL. Therefore Tx0 RZΛ,k

∼= A⊥/Fil1(ΦL)k. Since the bilinear pairing on (ΦL)k is non-degenerate, we have
dimk Tx0 RZΛ,k = dimk(ΦL)k − dimk A− 1 = dimk(ΦL/Λ∨W )− 1. By claim (1) in Lemma 4.2.8 (applied to
ΦL), we have dimk(ΦL/Λ∨W ) = t/2. �

Corollary 4.2.10. Let Λ ⊂ V Φ
K be a vertex lattice. The formal scheme RZΛ×Spf W Spec k is regular.

Proof. Let t be the type of Λ. Denote X := RZred
Λ and Y := RZΛ×Spf W Spec k. Then X is a formal

subscheme of Y over k. Recall from §2.9 that X is a smooth k-scheme of dimension t/2− 1. It follows that
for all x0 ∈ Y (k), the complete local ring of Y at x0 is of dimension ≥ t/2 − 1. By Proposition 4.2.9, the
tangent space of Y at x0 has k-dimension equal to t/2− 1. Hence Y is regular at x0. �

Theorem 4.2.11. Let Λ ⊂ V Φ
K be a vertex lattice. Then RZΛ = RZred

Λ and is of characteristic p.

Proof. RZΛ does not admitW/p2-points (Proposition 4.2.1) and its special fiber is regular (Corollary 4.2.10).
It follows from [RTZ13, Lemma 10.3] that RZΛ is equal to its special fiber. Being regular itself, RZΛ is
reduced. �

5. The intersection length formula

5.1. The arithmetic intersection as a fixed point scheme. Recall from §3.3 that we are interested in
computing the intersection of RZg and δ(RZ[), for g ∈ Jb(Qp).

Proposition 5.1.1. Assume g ∈ Jb(Qp) is regular semisimple. Then δ(RZ[)∩RZg is contained in Z(v(g)),
where v(g) = (xn, gxn, · · · , gn−1xn).

Proof. By Lemma 3.2.2, we have δ(RZ[) ⊆ Z(xn). Hence δ(RZ[) ∩ RZg ⊆ Z(xn) ∩ RZg ⊆ Z(gxn) by the
definition of special cycles. Repeating this procedure we obtain

δ(RZ[) ∩ RZg ⊆ Z(xn) ∩ Z(gxn) ∩ · · · ∩ Z(gn−1xn) = Z(v(g)). �

Corollary 5.1.2. Assume g ∈ Jb(Qp) is regular semi-simple and minuscule. Then

δ(RZ[) ∩ RZg ⊂ RZL(g)∨ = RZred
L(g)∨ .

In particular, δ(RZ[) ∩ RZg is a scheme of characteristic p.

Proof. The first statement is an immediate consequence of Lemma 2.14.4, Theorem 4.2.11, and Proposition
5.1.1. Now both δ(RZ[) and RZg are closed formal subschemes of RZ, so δ(RZ[) ∩ RZg is a closed formal
subscheme of the scheme RZL(g)∨ = RZred

L(g)∨ of characteristic p. Hence δ(RZ[) ∩ RZg is its self a scheme of
characteristic p. �
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5.1.3. In the rest of this section we will fix g ∈ Jb(Qp) regular semisimple and minuscule, and assume
RZg 6= ∅. Take Λ := L(g)∨. Then Λ is a vertex lattice stable under g, cf. Remark 3.6.1. We are
interested in computing the intersection length of δ(RZ[) and RZg around a k-point of intersection. Recall
the isomorphism (2.9.1.1) between pZ\RZred

Λ (which we now know is just pZ\RZΛ) and SΛ. Recall from §2.8
that SΛ is a projective smooth variety over k of dimension tΛ/2 − 1. We write d = tΛ/2. Let Ω0 = Λ/Λ∨

and Ω = Ω0⊗Fp k = ΛW /Λ
∨
W . Let 〈, 〉 be the k-bilinear form on Ω (cf. §2.7). Let G = SO(Ω),G0 = SO(Ω0).

Let ḡ be the induced action of g on Ω. Then ḡ ∈ G0(Fp) ⊂ G(k).
There is a natural action of ḡ on SΛ via its action on Ω. On R-points ḡ sends (Ld−1,Ld) to (ḡLd−1, ḡLd).

The latter is indeed a point of SΛ because ḡΦ = Φḡ by the fact that ḡ ∈ G0(Fp). The following proposition
allows us to reduce the study of intersection multiplicities to the study of the non-reduced structure of SḡΛ.

Proposition 5.1.4. pZ\(δ(RZ[) ∩ RZg) ∼= SḡΛ.

Proof. In view of Theorem 4.2.11, Corollary 5.1.2 and the observation that the isomorphism (2.9.1.1) induces
an isomorphism pZ\(RZred

Λ )g
∼−→ SḡΛ, it suffices to show

(pZ\RZred
Λ ) ∩ (pZ\δ(RZ[)) = (pZ\RZred

Λ ).

Since both pZ\RZred
Λ and pZ\δ(RZ[) are closed formal subschemes of pZ\RZ and since pZ\RZred

Λ is a reduced
scheme, it suffices to check that

pZ\RZred
Λ (k) ⊂ pZ\δ(RZ[)(k).

Now the left hand side consists of special lattices L containing Λ∨, and the right hand side consists of special
lattices L containing xn (cf. (2.12.0.1) and Lemma 3.4.2). We finish the proof by noting that by definition
xn ∈ Λ∨ = L(g). �

Proposition 5.1.4 reduces the intersection problem to the study of SḡΛ.

5.2. Study of SḡΛ. We continue to use the notation in §5.1. We adopt the following notation from [HP14,
§3.2].

Definition 5.2.1. Let OGr(d − 1) (resp. OGr(d)) be the moduli space of totally isotropic subspaces of
Ω of dimension d − 1 (resp. d). For a finite dimensional vector space W over k and an integer l with
0 ≤ l ≤ dimW , we write Gr(W, l) for the Grassmannian classifying l-dimensional subspaces of W . Thus for
j ∈ {d− 1, d} and any k-algebra R, we have

OGr(j)(R) = {R-module local direct summands of Ω⊗k R of local rank j which are totally isotropic} .

Also

Gr(W, l)(R) = {R-module local direct summands of W ⊗k R of local rank k} .

Definition 5.2.2. If A is a finite dimensional k-vector space, we write AA for the affine space over k defined
by A. Thus for a k-algebra R we have AA(R) = A⊗k R.

Definition 5.2.3. Let Ld,Md be Lagrangian subspaces of Ω such that Ω = Ld⊕Md. we write Homanti(Ld,Md)

for the space of anti-symmetric k-linear maps Ld →Md. Here we say φ : Ld →Md is anti-symmetric if the
bilinear form Ld × Ld → k, (x, y) 7→ 〈x, φy〉 is anti-symmetric.
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5.2.4. Recall that in general, if A is a finite dimensional vector space over k and B is a subspace, then
we can construct a Zariski open of the Grassmannian Gr(A,dimB) as follows. Choose a subspace C of
A such that A = B ⊕ C. Then there is an open embedding ιB,C : AHomk(B,C) → Gr(A,dimB) which
we now describe. For any k-algebra R and any R-point φ of AHomk(B,C), we view φ as an element of
Homk(B,C)⊗R = HomR(B ⊗R,C ⊗R). Then ιB,C maps φ to the R-point of Gr(A,dimB) corresponding
the following R-submodule of A:

{x+ φ(x)|x ∈ B ⊗R} .(5.2.4.1)

For details see for instance [Har95, Lecture 6]. In the following we will think of AHomk(B,C) as a Zariski open
of Gr(A,dimB), omitting ιB,C from the notation.

Lemma 5.2.5. Let Ld,Md be complementary Lagrangian subspaces of Ω over k. Then

OGr(d)×Gr(Ω,d) AHom(Ld,Md) = AHomanti(Ld,Md).

In particular, the k-point Ld in OGr(d) has an open neighborhood of the form AHomanti(Ld,Md).

Proof. Let R be a k-algebra and φ an R-point of AHom(Ld,Md). Then the submodule (5.2.4.1) (for B = Ld)
is Lagrangian if and only if for all x ∈ B ⊗R,

〈x+ φ(x), x+ φ(x)〉 = 0.

But we have 〈x, x〉 = 〈φ(x), φ(x)〉 = 0 since Ld ⊗ R and Md ⊗ R are both Lagrangian. Hence (5.2.4.1) is
Lagrangian if and only if 〈x, φ(x)〉 = 0 for all x ∈Md ⊗R. �

5.2.6. It follows from the assumptions we made on ḡ ∈ G(k) in 5.1.3 that its characteristic polynomial on
Ω is equal to its minimal polynomial on Ω (cf. Remark 3.6.1). In general this property is equivalent to
the property that every primary component of the k[ḡ]-module Ω is a cyclic k[ḡ]-module. This property is
inherited by any k[ḡ]-submodule of Ω, since any k[ḡ]-submodule of a cyclic k[ḡ]-module is cyclic.

From now on we let x0 = (Ld−1,Ld) ∈ SΛ(k) be an element fixed by ḡ. Then ΦLd ⊂ Ω is a k[ḡ]-submodule.
By the previous paragraph we know that ḡ|ΦLd has equal minimal and characteristic polynomial, and that
in its Jordan normal form all the Jordan blocks have distinct eigenvalues.

Definition 5.2.7. Let λ be the (nonzero) eigenvalue of ḡ on the one-dimensional ΦLd/Ld−1. Let c be the
size of the unique Jordan block of eigenvalue λ of ḡ|ΦLd .

5.2.8. Let x0 = (Ld−1,Ld) ∈ SΛ(k)ḡ as in 5.2.6. Define

Y := Gr(ΦLd, d− 1)×k OGr(d).

Let I ⊂ Y be the sub-functor defined by the incidence relation, i.e. for a k-algebra R

I(R) =
{

(L′d−1,L′d) ∈ Gr(ΦLd, d− 1)(R)×OGr(d)(R) | L′d−1 ⊂ L′d
}
.

The pair (Ld−1,Ld) defines a k-point in I, which we again denote by x0. It is well known that the incidence
sub-functor of Gr(ΦLd, d − 1) × Gr(Ω, d) is represented by a closed subscheme, and it follows that I is a
closed subscheme of Y .

Since x0 = (Ld−1,Ld) ∈ SΛ(k) is fixed by ḡ, we have a natural action of ḡ on Y , stabilizing I and fixing
x0 ∈ I. Let

R̃ := OI,x0 , R := OIḡ,x0 , S̃ := OSΛ,x0 , S := OSḡΛ,x0

be the local rings at x0 of I, I ḡ, SΛ, S
ḡ
Λ respectively. Let

R̃p := R̃/mpR̃, Rp := R/mpR, S̃p := S̃/mpS̃ , Sp := S/mpS
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be the above four local rings modulo the p-th powers of their respective maximal ideals.
The following lemma expresses the observation that I ḡ may serve as a model for SḡΛ locally around x0.

Lemma 5.2.9. (1) There is a k-algebra isomorphism R̃p ∼= S̃p, equivariant for the ḡ-action on both sides.
(2) There is a k-algebra isomorphism Rp ∼= Sp.

Proof. We first show (1). Let (L′d−1,L′d) be the tautological pair over S̃p for the moduli problem SΛ, and
let (L′′d−1,L′′d) be the tautological pair over R̃p for the moduli problem I. Note that

ΦL′d = (ΦLd)⊗ S̃p

as submodules of Ω ⊗k S̃p because Φ : S̃p → S̃p factors through the reduction map S̃p → k. It follows that
(L′d−1,L′d) defines a point in I(S̃p) lifting x0 ∈ I(k). Similarly,

ΦL′′d = (ΦLd)⊗ R̃p

as submodules of Ω⊗k R̃p, and hence (L′′d−1,L′′d) defines a point in SΛ(R̃p) lifting x0 ∈ SΛ(k). The point in
I(S̃p) and the point in SΛ(R̃p) constructed above give rise to inverse k-algebra isomorphisms between R̃p
and S̃p, which are obviously ḡ-equivariant.

(2) follows from (1), since Rp (resp. Sp) is the quotient ring of R̃p (resp. S̃p) modulo the ideal generated
by elements of the form r − ḡ · r with r ∈ R̃p (resp. r ∈ S̃p). �

5.3. Study of I ḡ. Next we study I ḡ by choosing certain explicit coordinates on I. Choose a k-basis
v1, · · · , vd, w1, · · · , wd of Ω, such that

• Ld−1 is spanned by v1, · · · , vd−1.
• Ld is spanned by v1, · · · , vd.
• ΦLd is spanned by v1, · · · , vd−1, wd.
• 〈vi, vj〉 = 〈wi, wj〉 = 0, 〈vi, wj〉 = δij .

We will denote

v̂i :=

vi, 1 ≤ i ≤ d− 1

wd, i = d

Also denote
Md := spank(w1, · · · , wd).

For 1 ≤ i ≤ d− 1, define an element φi ∈ Hom(Ld−1, spank(wd)) by

φi(vj) = δijwd.(5.3.0.1)

Then φ1, · · · , φd−1 is a basis of Hom(Ld−1, spank(wd)).
By §5.2.4 and Lemma 5.2.5, there is a Zariski open neighborhood of x0 in Y , of the form

U := AHom(Ld−1, spank(wd)) × AHomanti(Ld,Md).

Lemma 5.3.1. (1) Let R be a k-algebra. Let y ∈ U(R), corresponding to

(φ, ψ) ∈ Hom(Ld−1, spank(wd))⊗R⊕Homanti(Ld,Md)⊗R.

We view φ ∈ HomR(Ld−1⊗R, spanR(wd)) and ψ ∈ HomR(Ld⊗R,Md⊗R). Then y is in I if and only
if ψ|Ld−1⊗R = φ.

(2) The projection to the first factor U → AHom(Ld−1,spank(wd)) restricts to an isomorphism

U ∩ I ∼−→ AHom(Ld−1,spank(wd)).
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Proof. (1) We know that y is in I if and only if for all v ∈ Ld−1 ⊗R, there exists v′ ∈ Ld ⊗R, such that

v + φ(v) = v′ + ψ(v′)

as elements of Ω ⊗ R. Decompose v′ = v′1 + v′2 with v′1 ∈ Ld−1 ⊗ R and v′2 ∈ spanR(vd). Then the above
equation reads

v − v′1 = v′2 + (ψ(v′)− φ(v)).

Since v − v′1 ∈ Ld−1 ⊗ R, v′2 ∈ spanR(vd), ψ(v′)− φ(v) ∈ Md ⊗ R, the above equation holds if and only if
v = v′1, v

′
2 = 0, φ(v) = ψ(v). Hence y ∈ I if and only if for all v ∈ Ld−1 ⊗ R we have ψ(v) = φ(v). This

proves (1).
(2) By (1), we know that U ∩ I is the affine subspace of U associated to the linear subspace of

Hom(Ld−1, spank(wd))×Homanti(Ld,Md)

consisting of pairs (φ, ψ) such that ψ|Ld−1
= φ. Call this subspace A. We only need to show that projection

to the first factor induces an isomorphism A
∼−→ Hom(Ld−1, spank(wd)).

Note that if ψ ∈ Homanti(Ld,Md), then ψ is determined by ψ|Ld−1
. This is because for each 1 ≤ i ≤ d,

we have

〈ψvd, vi〉 =

−〈vd, ψvi〉, i ≤ d− 1

0, i = d
(5.3.1.1)

which means that ψ(vd) is determined by ψ|Ld−1
. Conversely, given φ ∈ Hom(Ld−1, spank(wd)) we can

construct ψ ∈ Homanti(Ld,Md) such that ψ|Ld−1
= φ as follows. For 1 ≤ j ≤ d−1, define ψ(vj) to be φ(vj).

Define ψ(vd) to be the unique element ofMd satisfying (5.3.1.1). In this way we have defined a linear map
ψ : Ld → Md such that ψ|Ld−1

= φ. We now check that ψ is anti-symmetric. We need to check that for
all 1 ≤ i ≤ j ≤ d, we have 〈ψvj , vi〉 = −〈ψvi, vj〉. If j = d, this is true by (5.3.1.1). Suppose j < d. Then
〈ψvj , vi〉 = 〈ψvi, vj〉 = 0 because ψvj , ψvi ∈ spank(wd) and 〈wd,Ld−1〉 = 0. Thus ψ is indeed antisymmetric.
It follows that A ∼−→ Hom(Ld−1, spank(wd)). �

From now on we assume x0 = (Ld−1,Ld) ∈ SḡΛ(k).

Definition 5.3.2. Write the matrix over k of ḡ acting on ΦLd under the basis v̂1, · · · , v̂d (cf. §5.3) as(
H1 H2

H3 H4

)
,

where H1 is of size (d− 1)× (d− 1), H2 is of size (d− 1)× 1, H3 is of size 1× (d− 1), and H4 ∈ k.

Remark 5.3.3. Since ḡ stabilizes Ld−1, we have H3 = 0

Proposition 5.3.4. Let R be a k-algebra and let y = (φ, ψ) ∈ U(R). Represent φ as an R-linear combination
φ =

∑d−1
i=1 riφi of the φi’s (cf. (5.3.0.1)), where ri ∈ R. Write ~r for the row vector (r1, · · · , rd−1).

(1) View φ as an element of Gr(ΦLd, d− 1)(R). It is fixed by ḡ|ΦLd if and only if

~r(H1 +H2~r) = H4~r.(5.3.4.1)

(2) Assume that y ∈ I(R) and that φ ∈ Gr(ΦLd, d− 1) is fixed by ḡ|ΦLd . Then ψ, viewed as an element of
OGr(d)(R), is fixed by ḡ. In other words, y is fixed by ḡ in this case.
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Proof. (1) First we identify (ΦLd)⊗R with Rd using the basis v̂1, · · · , v̂d. As a point of Gr(ΦLd, d− 1), φ
corresponds to the following submodule of (ΦLd)⊗R: the image, i.e. column space, of the R-matrix(

Id−1 0

~r 0

)
.

Hence φ ∈ Gr(ΦLd, d−1) is fixed by ḡ|ΦLd if and only if the following two R-matrices have the same column
space:

A1 :=

(
Id−1 0

~r 0

)
and A2 :=

(
H1 H2

H3 H4

)(
Id−1 0

~r 0

)
.

Note that since

(
H1 H2

H3 H4

)
is invertible, A1 and A2 have the same column space if and only if the column

space of A2 is contained in that of A1. Since H3 = 0 (cf. Remark 5.3.3), we have

A2 =

(
H1 +H2~r 0

H4~r 0

)
.

But we easily see that the column space of

(
H1 +H2~r 0

H4~r 0

)
is contained in that of

(
Id−1 0

~r 0

)
if and only

if (5.3.4.1) holds.
(2) Let OGr(d−1, d) be the incidence subscheme of OGr(d−1)×OGr(d). Consider the natural morphism

f : I → OGr(d−1, d), (L′d−1,L′d) 7→ (L′d−1,L′d). Note that U ∩I is connected because it is a linear subspaces
of the affine spaces U (cf. Lemma 5.3.1). Thus (ḡ · U) ∩ I = ḡ(U ∩ I) is also connected. Since U ∩ I and
(ḡ · U) ∩ I share a common k-point, namely x0, we see that that f(U ∩ I) and f((ḡ · U) ∩ I) are in one
connected component of OGr(d − 1, d). We have y ∈ U ∩ I and ḡy ∈ (ḡ · U) ∩ I. In particular f(y) and
f(ḡy) are R-points of the aforementioned connected component of OGr(d − 1, d). Recall from [HP14, §3.2]
that OGr(d− 1, d) has two connected components, and each is isomorphic to OGr(d− 1) via the projection
to the first factor. Our assumptions imply that f(y), f(ḡy) have the same image in OGr(d − 1). It follows
that f(y) = f(ḡy). But by definition f is injective on R-points, so y = ḡy. �

Proposition 5.3.5. Assume x0 ∈ SḡΛ(k). Then the local ring R = OIḡ,x0 of I ḡ at x0, is isomorphic to
the local ring at the origin of the subscheme of Ad−1

k defined by the equations (5.3.4.1), where Ad−1
k has

coordinates r1, · · · , rd−1. Moreover, explicitly we have

R ∼= k[X]/Xc.

Proof. The first claim follows from Lemma 5.3.1 and Proposition 5.3.4. To compute R explicitly, we may and
shall assume that the bases chosen in 5.2.8 are such that the matrix H1 is already in its (upper-triangular)
Jordan normal form. Recall from Definition 5.2.7 that all the Jordan blocks have distinct eigenvalues. Let
Jd1(λ1), · · · , Jds−1(λs−1) be the Jordan blocks that have eigenvalues different from λ. Let λs = λ and let
Jds(λs) be the Jordan block of eigenvalue λs that appears in H1, where we allow ds = 0. Then ds = c− 1.
Moreover, we assume that Jd1

(λ1), · · · , Jds(λs) appear in the indicated order. Note that H4 = λ. Write
H1 = (hij)1≤i,j≤d−1. The equations (5.3.4.1) become

ri−1hi−1,i + (hi,i − λ+ ~rH2)ri = 0, 2 ≤ i ≤ d− 1

(h1,1 − λ+ ~rH2)r1 = 0
(5.3.5.1)

Note that when hi,i is not in the Jordan block Jds(λs), we have hi,i − λ ∈ k×, so the element hi,i − λ+ ~rH2

is a unit in the local ring OAd−1,0. Hence for i ≤ d1 + d2 + · · · + ds−1 = d − c, each ri is solved to be a
29



multiple of ri−1 and this multiple eventually becomes zero when this procedure is iterated. In other words,
the ideal in OAd−1,0 defining R is generated by

r1, r2, · · · , rd−c, (~rH2)rd−c+1, (~rH2)ri + ri−1 (d− c+ 1 < i ≤ d− 1).

When c = 1, we have R ∼= k as expected. Assume now c ≥ 2. Let h1, · · · , hc−1 be the last c − 1 entries of
the (d− 1)× 1-matrix H2. Make the change of variablesXi = rd−c+i, 1 ≤ i ≤ c− 1,

A = ~rH2.

Then we have

R ∼=

(
k[X1, · · · , Xc−1, A]

(A−
∑c−1
i=1 hiXi, AX1, X1 +AX2, X2 +AX3, · · · , Xc−2 +AXc−1)

)
(X1,··· ,Xc−1)

By eliminating the variables X1, . . . , Xc−2, we obtain that

R ∼=

(
k[Xc−1, A]

(Xc−1Ac−1, A−Xc−1

∑c−2
i=0 hc−1−i(−A)i)

)
(Xc−1,A)

.

Note that if hc−1 = 0, then the last two rows of the matrix

λId −

(
H1 H2

0 H4

)

are both zero. This contradicts with the fact that the matrix

(
H1 H2

0 H4

)
, which represents ḡ on ΦLd,

has in its Jordan normal form a unique Jordan block of eigenvalue λ (cf. §5.2.6). Hence hc−1 6= 0, and∑c−2
i=0 hc−1−i(−A)i is a unit in k[Xc−1, A](Xc−1,A). It follows that

R ∼=
(
k[X]

(Xc)

)
(X)

= k[X]/Xc,

as desired. �

5.4. The intersection length formula. We are now ready to determine the structure of the complete
local ring of SḡΛ at a k-point of it, when p is large enough. It is a consequence of Lemma 5.2.9, Proposition
5.3.5, and some commutative algebra.

Theorem 5.4.1. Let x0 ∈ SḡΛ(k). Let λ and c be as in Definition 5.2.7. Assume p > c. Then the complete
local ring of SḡΛ at x0 is isomorphic to k[X]/Xc as a k-algebra.

Proof. Denote by Ŝ the complete local ring of SḡΛ at x0. Since SΛ is smooth of dimension d − 1 (see §2.8),
we know that Ŝ is a quotient ring of k[[X1, · · · , Xd−1]]. Let m̄ be the maximal ideal of Ŝ. By Lemma 5.2.9
and Proposition 5.3.5, there is a k-algebra isomorphism Ŝ/m̄p ∼= k[X]/Xc. It follows that Ŝ is isomorphic to
k[X]/Xc as a k-algebra, by [LZ17, Lemma 4.3.6]. �

Corollary 5.4.2. Let g ∈ Jb(Qp) be regular semisimple and minuscule. Assume RZg 6= ∅ and keep the
notation of 5.1.3. Let x0 ∈ (δ(RZ[) ∩ RZg)(k). Let (Ld−1,Ld) ∈ SΛ(k) correspond to x0 via Proposition
5.1.4 and define λ, c as in Definition 5.2.7. Assume p > c. Then the complete local ring of δ(RZ[) ∩ RZg

at x0 is isomorphic to k[X]/Xc. Moreover, we have c = m(Q(T ))+1
2 , where Q(T ) as in Theorem 3.6.4. In

particular, 1 ≤ c ≤ n/2.
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Proof. The first part follows immediately from Proposition 5.1.4 and Theorem 5.4.1. It remains to show
that

c =
m(Q(T )) + 1

2
.

Suppose x0 ∈ BTΛ′ for some vertex lattice Λ′ (not necessarily equal to Λ = L(g)∨). Let L be the associated
special lattice. Then we have (§2.12)

(Λ′)∨W ⊆ L ⊆ Λ′W , (Λ′)∨W ⊆ Φ(L) ⊆ Λ′W .

Hence the eigenvalue λ of ḡ on Φ(Ld)/Ld−1
∼= (L+Φ(L))/L appears among the eigenvalues of ḡ on Λ′/(Λ′)∨,

and so the minimal polynomial of ḡ on Λ′/(Λ′)∨ in Fp[T ] is equal to Q(T ) by the proof of Theorem 3.6.4.
Notice that the characteristic polynomial of ḡ on Φ(Ld) (in k[T ]) divides R(T )Q(T ) (the characteristic
polynomial of ḡ on Λ′W /L(g)) and also is divided by R(T ) (the characteristic polynomial of ḡ on (Λ′)∨W /L(g)).
It follows that c, the multiplicity of λ of ḡ on Φ(Ld), is equal to the multiplicity of λ in R(T )Q(T ). The
desired formula for c then follows since

m(Q(T )) + 1 = 2 · the multiplicity of Q(T ) in R(T )Q(T ).

Finally, we note that m(Q(T )) is a positive odd integer not greater than the degree of P (T ), and the latter,
being the type of the vertex lattice Λ = L(g)∨, is an even integer ≤ tmax (cf. §2.7). The bound for c follows
from the value of tmax given in §2.7. �
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