Hilbert, in his 9th problem, posed the problem of finding the general reciprocity law for any number field. The class field theory developed in the first half of the 20th century was successful in answering this question for finite abelian extensions of
. As an easy consequence of class field theory, one can reproduce the classical Kronecker-Weber theorem, that is, every finite abelian extension of
is a subfield of some cyclotomic extension
of
. Hilbert's 12th problem also asked how to extend the Kronecker-Weber theorem to an arbitrary ground number field, in other words, how to describe abelian extensions of a number field more explicitly.
Motivated by the case of
where all abelian extensions are obtained by adjoining the values of the exponential function, Kronecker conjectured, while he was studying elliptic functions, that all abelian extensions of an imaginary quadratic field should also arise in such a manner. This was achieved by the beautiful theory of complex multiplication, which allows one to describe all abelian extensions of an imaginary quadratic field via the values of the modular
-function and the Weber function, or in the language of elliptic curves, via the
-invariant and (certain powers of)
-coordinates of all torsion points of the corresponding elliptic curve. This problem for general number fields, known as Kronecker's Jugendtraum (dream of youth), is still largely open and is at the heart of current research in number theory.
In this chapter, we will start by establishing the one-one correspondence between
, the ideal class group of an order
in an imaginary quadratic field
, and
, the set of all isomorphism classes of elliptic curves with complex multiplication by
. Next, we will define the ring class field of
and then prove that it is obtained by adjoining the value
for any proper fractional ideal of
, using the method of reduction of elliptic curves. Moreover, the ray class fields of
can be obtained by adjoining the values of the Weber function. Next, we will discuss the modular equation and use it to prove the integrality of
. The values of
, i.e., the values of
at the imaginary quadratic argument
, are called singular moduli as they correspond to the
-invariants of singular elliptic curves. We will use Weber's method to explicitly compute singular moduli for orders of class number 1. These singular moduli turn out to be highly divisible as predicted by a remarkable theorem of Gross and Zagier. Gross and Zagier's theorem on singular moduli completely determines the prime factorization of the norm of the difference between two singular moduli. Our last section will be devoted to the algebraic proof of this theorem, relying on Deuring's results on the endomorphism rings of elliptic curves.
Complex multiplicationAs we saw in the first chapter, for a complex elliptic curve
, the endomorphism ring
can be identified with
. When
has complex multiplication,
is an order
in an imaginary quadratic extension
of
. Though complex conjugation will give us two isomorphisms between
and
, we do have a canonical way to identify
with
. Namely, for every
, we identify it with the endomorphism
of
induced by the multiplication
. In other words, the effect of
on the invariant differential is given by
. We call this identification the normalized identification.
, then
,
and
has complex multiplication by
. The normalized identification is given by the endomorphism
, since
.
, then
,
and
has complex multiplication by
, where
. The normalized identification is given by the endomorphism
, since
.
Fix an order
in
. We are interested in studying all complex elliptic curves with endomorphism ring
. We denote the set of all these isomorphism classes by
. As we will see in Theorem 1, it turns out that
is in bijection with a purely algebraic object constructed from
, namely the ideal class group of
.
and
be as above. Let
be a fractional ideal of
, then
is a ring and contains the order
, so it is also an order. We say that
is proper if
is equal to
.
, denoted by
, forms a group ([1, 4.11]), called the ideal group of
. Denote by
the subgroup of principal proper fractional ideals. The quotient group
is called the ideal class group of
. When
is the ring of integers
, we recover the ideal class group of
in the usual sense.
is proper if and only if it is locally principal ([1, 5.4.2]), hence
can be viewed as the reduced Grothendieck group
, i.e., the group of projective
-modules of rank 1 ([2]).
be a complex elliptic curve with
, then
for some proper fractional ideal
of
. Moreover,
if and only
and
are in the same ideal class. Conversely, for every proper fractional ideal
,
.
In other words, the above correspondence gives a bijection
.
is a complex elliptic curve, by Example 1 we know that
for some lattice
for some
. We can view
as a fractional ideal
of
. Then, under the normalized identification,
Therefore
is a proper fractional ideal. Moreover,
if and only if
for some
, if and only if
and
are in the same ideal class, since every principal fractional ideal is automatically proper.
Conversely, suppose
is a proper fractional ideal, then
, hence
.
¡õ
We will soon see that
is a finite group. The order of
, denoted by
, is called the class number of
. So by Theorem 1, there are exactly
isomorphism classes of elliptic curves with complex multiplication by
and each of them corresponds to an ideal class of
. Let
be an elliptic curve with
, then for any automorphism
of
,
is also an elliptic curve with
. So by the finiteness of the ideal class group and the above correspondence between
and
, we know
has finitely many values, hence
is an algebraic number of degree at most
.
An amazing fact is that for an elliptic curve
with complex multiplication by
,
is actually an algebraic integer of degree
(Theorem 8). In particular, an elliptic curve with complex multiplication has a rational
-invariant if and only
. We will calculate these
-invariants later.
Ring class fieldsLet
be an imaginary quadratic extension of
of discriminant
. The ring of integers
of
is equal to
where
. Every order
of
is a free
-module of rank 2, hence is of the form
, where the positive integer
is called the conductor of
. When
,
is the maximal order and is a Dedekind domain. But when
,
is not integrally closed and hence is not a Dedekind domain. So it is not necessary for the unique factorization to hold for ideals in
. For example,
is an order of conductor 2 of
, and the ideal
has two different prime factorizations
. However, we will see that the situation becomes better when we restrict our attention to the ideals prime to
.
prime to
is proper. An ideal
of
is prime to
if and only if
is prime to
.
is an ideal of
prime to
. By definition,
. Suppose
such that
, then
Hence
. It follows that
is proper.
Next, let
be multiplication by
. Then
if and only if
is surjective. But
is an finite abelian group of order
, so
is surjective if and only if
is prime to
.
¡õ
Therefore the ideals prime to
are in
and are closed under multiplication. They generate a subgroup of fractional ideals
. Similarly define
. Given any integer
, every ideal class in
contains an ideal prime to
([3, 7.17]). So the natural inclusion induces a surjective map
. Moreover, the kernel of this surjective map is
, so we have an isomorphism
([3, 7.19]).
Since
is a Dedekind domain, the first part of the next Proposition 2 ([3, 7.20, 7.22]) tells us that unique factorization does hold for fractional ideals of
prime to
.
induces an isomorphism
, and the inverse map is given by
. The isomorphism
induces an isomorphism
, where
Viewing
as a cycle of
, we know that
and that
is a subgroup of
containing
(we use the symbols for generalized ideal groups as in [4, VI]). Hence, by class field theory,
corresponds to a finite abelian extension
of
.
Combining the isomorphism
and the second part of Proposition 2, we know that
, and composing with the Artin map we obtain an isomorphism
. In particular,
is a finite group. Again, when
, i.e.,
is the maximal order
, the ring class field of
is just the usual Hilbert class field of
. So we may regard the ring class field as a generalization of the Hilbert class field.
is related to the classical problem of determining the primes of the form
studied by Fermat, Euler, Lagrange, Legendre and Gauss. More precisely, let
be a real algebraic integer such that the ring class field
and let
be its minimal polynomial, then for odd
dividing neither
nor the discriminant of
, we have
See [3] for this beautiful story.
Main theorems of complex multiplicationThe first main result of this section is the ``First Main Theorem'' of complex multiplication, which says the ring class field of
can be obtained by adjoining the value of
-function at any proper ideal of
. The key step of the proof is to establish the so-called Hasse congruence (Theorem 2), which expresses the Frobenius action on the value of the
-function via the action on the argument of the
-function. There are several different approaches to do so: the complex analytic method using the modular equation, or the algebraic method we choose here using the reduction of elliptic curves. We follow mainly the exposition of [5] and [3].
First, by using Chebotarev's density theorem, one can show the following characterization of field extensions by the primes which split completely ([3, 8.20]). We will utilize this Lemma 1 twice to characterize the ring class field in Lemma 2.
be a number field. Let
be a finite Galois extension of
and
be a finite extension of
. Then
if and only if for all but finitely many unramified primes
of
which have a degree 1 prime
of
above
,
splits completely in
.
From now on, let us fix an order
of conductor
in an imaginary quadratic field
. Let
(
) be the representatives of the ideal class group
and
be the corresponding elliptic curves with complex multiplication by
via Theorem 1. Let
.
be a prime which splits as
. If for all but finitely many such
, we have the congruence
for any proper fractional ideal
of
and any prime
of
over
, then
is the ring class field of
for any proper fractional ideal
of
.
be the ring class field of
. Let us first show that
. Suppose
is a unramified prime of
and
is a degree 1 prime of
over
. By Lemma 1, it suffices to show that for all but finitely many such
,
splits completely in
. Since
is of degree 1, we already know that
must split completely as
in
for some primes
of
. By the assumption, for all but finitely many such
, we have
where the second equality is because
has degree 1. Excluding the finitely many primes
such that
divides any of the differences
, we conclude that
for all but finitely many primes
. So
is a principal ideal of
and hence has trivial Artin symbol, therefore
splits completely in
.
Next let us show that
. Let
be the Galois closure of
. Suppose
is a prime which splits completely in
. Again by Lemma 1, it suffices to show that for all but finitely such
,
splits completely in
. Since
splits completely in
,
must be a principal ideal of
and then
. So by assumption,
for all but finitely many such
and any prime
of
above
. Now suppose further that
does not divide the index
, then we have
for any
, hence
has degree 1 for any
above
. Therefore
splits completely in
.
¡õ
be a prime satisfying that
,
splits as
and the
's have good reduction at
. Then for any proper fractional ideal
of
and any prime
of
above
, we have the Hasse congruence
,
and
are proper. We may assume that
and
represent
and
in the ideal classes. Then
,
and we have a natural isogeny
since
. Because
splits completely, we know that
. Now find an ideal
prime to
in the ideal class of
, then
is a principal ideal generated by some
. Therefore
induces an isogeny
and
is prime to
by our choice of
. The composition
is given by
via the normalized identification of
and
.
Now since the
's have good reduction at
, reducing modulo
we get an isogeny
. But
, so
where
is the invariant differential of
. Therefore
is inseparable. As the reduction does not change the degree of an isogeny,
is prime to
, hence
is separable. We conclude that
is inseparable. But
, hence
is purely inseparable. So
is the composition of the
-Frobenius
and an isomorphism
. Hence
and the claim follows.
¡õ
From Theorem 2 and Lemma 2, we already know that
is actually the ring class field
of
. Further more, we can use the limited information of the Hasse congruence to compute the Galois action on the
-values.
of
and
, we have
for any proper ideal
, where
is a prime of
whose Artin symbol is
. In particular,
is the Galois orbit of
for any proper fractional ideal
of
and
, where
.
of
whose Artin symbol is
. By Theorem 2, for all but finitely many such primes
(excluding those not prime to
), we have
where
is proper and
is any prime of
over
. Since these
's have the same Artin symbol, they must lie in the same ideal class of
. So
is the same for every
and has infinitely many prime factors, therefore it must be zero. We conclude that
. The remaining part follows since
and we already know
.
¡õ
Now we are in a position to prove the First Main Theorem of complex multiplication.
is the ring class field of
for any proper fractional ideal
of
. In particular,
is the Hilbert class field of
.
As a consequence of the First Main Theorem 4, all everywhere unramified extensions of
can be obtained as a subfield of
. Moreover, one can show that an abelian extension of
is generalized dihedral over
if and only if it is contained in the ring class field of some order in
([3, 9.18]), so the First Main Theorem also tells us how to construct generalized dihedral extensions explicitly. Now, it is natural to ask how to generate all abelian extensions of
, in other words, how to give an explicit description of the ray class fields of
. This is the content of the ``Second Main Theorem'' of complex multiplication.
be an elliptic curve with a Weierstrass model
. For any
, define the Weber function
So the Weber function is essentially the
-coordinate function on the elliptic curve
. Notice that the powers of the coordinate
and the normalized constants appearing in the expression are chosen in the way that
is invariant under the isomorphisms of elliptic curves. In the language of lattices, we may define the Weber function
as follows:
Now let us establish an analog of the Hasse congruence for the Weber function.
and
be an extension of
containing all
's and
's. Let
be a prime satisfying
,
splits as
and
's have good reduction at
. Then for any proper fractional ideal
of
and any prime
of
above
, we have the congruence
which is the composition of the
-Frobenius
and an isomorphism
. Since the Weber function is invariant under isomorphisms, we know that
and the claim follows since
is just the natural projection.
¡õ
After the congruence in Theorem 5 is established, a similar argument as for ring class fields will allow us to construct all the ray class fields of
. We state this Second Main Theorem and omit the details of the proof here. Roughly speaking, the maximal abelian extension of
is generated by
and the
-coordinates of all torsion points of the corresponding elliptic curve with complex multiplication by
. See [3, 11.39] and [6, II.5] for more.
be an ideal of
and
be an elliptic curve with complex multiplication by
. Let
be the
-torsion points of
, then
is the ray class field of
with respect to the cycle
. In particular, the maximal abelian extension of
is equal to
.
Modular equations and the integrality of singular moduliWe have seen that
is an algebraic number of degree
from Theorem 3. But in fact more is true: it is an algebraic integer. There are several possible proofs of this fact: the complex analytic proof using the modular equation, the good reduction proof due to Serre and Tate, and the bad reduction proof due to Serre ([6, II.6]). We have not talked much about the analytic aspect of
-function so far, so we will choose the first approach here.
Let us first recall some facts about the modular curve
, which plays an important role in modern number theory. The modular curve
is a compact Riemann surface constructed by compactifying
, the quotient of upper half plane by the congruence group
. It is the compactification of the moduli space of elliptic curves along with the level structure of a cyclic subgroup of order
. Viewing
as a complex algebraic curve, the function field of
is equal to
. So
has a planar model defined by some complex polynomial
satisfying
, called the modular equation of level
([7]).
An unexpected result is that the modular equation
in fact has rational, or even better, integer coefficients. Therefore,
can be defined as an algebraic curve over
without reference to the complex numbers and it has a planar model over
defined by the modular equation. The goal of this section is to prove this unexpected fact and deduce the integrality of
as a consequence.
To define the modular equation, we need the following lemma.
-expansion principle)
Let
be a modular function with respect to
with the
-expansion
. Then
can be expressed as a polynomial of degree
in
. In particular, if
's are integers, then this polynomial has integer coefficients.
. When
,
is a holomorphic function on the compact Riemann surface
, hence it must be the constant
. When
, since
has
-expansion
with integer coefficients, the leading term of the
-expansion of
is
and all the coefficients are in
. Now applying the induction hypothesis, we know
is a polynomial of degree
. The lemma follows.
¡õ
Suppose
is a set of orbit representatives for the left action of
on
. We define
Then the coefficients of
in
are modular functions of
, hence by Lemma 3, these coefficients of
are polynomials in
. So
is a polynomial, called the modular polynomial or the modular equation of level
.
Since
, it follows immediately that
. Also, it is an easy computation ([5, 4.5]) to see that the set of orbit representatives can be chosen as 
. Moreover, when
is not a perfect square, the leading coefficient of
is
.
, it suffices to show that the
-expansions of
have integer coefficients. Using the orbit representatives in
, we find that for
,
has a Fourier expansion in
with coefficients in
where
, hence the coefficients of
-expansions of
are in
. For an integer
prime to
, the map
is a permutation of
, hence it leaves
unchanged. But this map has an action
on the coefficients, therefore the coefficients are actually in
. So
.
Now suppose
is not a perfect square. The leading coefficient of
is the same as the leading coefficient of the
-expansion of
, so let us show that the latter is
. Now
begins with
and
begins with
, so since
is not a perfect square and
, we know that
and
cannot cancel out, hence the leading coefficient of
is a root of unity. Multiplying them together, we know that the leading coefficient of
is a root of unity. But we already know it is an integer, hence it must be
.
¡õ
See [3, 13.B] for an algorithm of computing the modular equations. However, it is usually cumbersome to do the computation even for small levels. The
case was computed by Smith in 1878; the
case was computed by Berwick in 1916; the
case was computed by Herrmann in 1974 and the
case was computed by Kaltofen and Yui using MACSYMA in 1984. The resulting polynomial
is of degree 21 with coefficients up to
and needs 5 pages to be written out.
Now we are in a position to prove the integrality of the singular moduli.
be an order in an imaginary quadratic field
and
be a proper fractional ideal of
. Then
is an algebraic integer of degree
.
in the principal ideal class. Let
be such a prime. Then
where
is a prime. We may assume that
, then
is homothetic to
for some
([3, 11.24]). We know that
by definition. But
by our choice of
. Hence by Theorem 7,
satisfies the polynomial
with leading coefficient
and therefore
is an algebraic integer. Moreover, we know that its degree is
from Theorem 3.
¡õ
Weber's computation of singular moduliAs an application of Proposition 2, we get an exact sequence
Hence the class numbers of
and
are related by
One can show that there is an exact sequence ([3, Exercise 7.30])
Therefore we are able to reproduce the following formula due to Gauss for the class number of an order
in
([3, 7.24]).
Our goal in this section is to compute the
for the orders
of class number 1. By Theorem 8, all these singular moduli are rational integers. A famous result about the Gauss class number problem, now known as the Stark-Heegner theorem, says that there only 9 imaginary quadratic fields having class number 1. Moreover, using Theorem 9, we can conclude that there are only four more cases for non-maximal orders of class number 1. More precisely, when
, only
and
can occur; when
(i.e.,
), only
can occur; when
(i.e.,
), only
can occur. Since an order
is uniquely determined by its discriminant
, we may summarize the results as the following theorem.
of class number 1. Their discriminants are
There are only 13 orders
of class number 1. Their discriminants are
To compute these singular moduli, one may proceed by plugging
into the
-expansion of
,
This
-expansion can be computed via the
-expansions of
and
,
So nowadays we can handle this task using a computer. The numerical method will work pretty well for our purpose since we know a priori that these values are integers. All the 13 singular moduli of integer values are listed in Table 1.

By Theorem 10, we easily obtain a quick method of detecting complex multiplication for elliptic curves over
: if
appears in Table 1 , then
has complex multiplication with the corresponding order
; otherwise,
does not have complex multiplication.
However, we are not fully satisfied with this direct computation. For example, it does not explain why most singular moduli in Table 1 (except the two boxed ones) are cubes. Nor does it explain the observation that all these singular moduli are highly divisible. We will try to explain the reasons for these phenomena in the last two sections of this chapter (see Theorem 11, Corollary 1).
Now let us introduce Weber's method for computing the singular moduli of integer values. The main tool of Weber's computation is a class of Weber functions
,
,
and
(not to be confused with the Weber function
defined earlier).
where
is chosen so that it is real-valued on the imaginary axis.
The Weber function
satisfies the following transformation property
Then it is straightforward to check that
is a modular function with respect to
([3, 12.3]). So
. Moreover, when the order
has discriminant prime to 3, we have the following even better relationship between
and
([3, 12.2]).
be an order of discriminant
and assume
. Set
Then
.
is an algebraic integer and
is the ring class field of
. Moreover,
.
By the last part of Theorem 11, we know that
has the same degree as
when
. In particular, when
,
is an integer since
is so. Therefore
is a cube when
, which coincides with the result listed in Table 1 . The two boxed exceptions
, as expected, are divisible by 3.
We may summarize the most important relationship and transformation properties of these Weber functions as follows [3, 12.17, 12.19]. These properties are crucial to Weber's computation of singular moduli.
Now let us use Theorem 12 to compute
for those orders with discriminants prime to 3. As a consequence, we will be able to compute the singular moduli for those orders easily by raising the corresponding
to the third power.
Using the product formula, we get
Now applying the inequality
for
, we obtain
since
. Using this estimate and plugging
into Equation (1), we get
The difference of the upper bound and the lower bound is
Using the inequality
for
, we have
The right hand side is an increasing function in
, so
implies
. But
is an integer by Theorem 11, so
.
Next let us consider the case of odd discriminant. The above computation fails, since
is now negative. However, we can translate
to
as follows. By Theorem 12 (b) and (d), we know that
and
Therefore
Now a similar argument shows the desired result
.
¡õ
. Then
, so by Theorem 11 and Theorem 13, we can compute the singular modulus
It agrees with the result in Table 1 . We will come back to this example using the powerful Gross-Zagier's theorem in the next section.
Gross-Zagier's theorem on singular moduliGross and Zagier [8] proved a result which completely determines the prime factorization of the norm of the difference between two singular moduli, which in turn justified many classical conjectures on the congruences of singular moduli proposed by Berwick [9]. They provide two proofs of different natures: The first proof, an algebraic proof, is based on Deuring's work on endomorphism rings of elliptic curves mentioned in Chapter 2. The second analytic proof relies on the calculation of the Fourier coefficients of the restriction to the diagonal
of an Eisenstein series of the Hilbert modular group of
. As the authors remarked, these two methods can be viewed as the special case
of the theory of local heights of Heegner points on
, which generalizes to the groundbreaking Gross-Zagier formula [10].
In this section, we will first state Gross-Zagier's theorem, then use it to compute several examples and derive some consequences. At the end, we will discuss a bit of the algebraic proof of Gross-Zagier's theorem.
Now consider two orders with discriminants
and
satisfying
. Let
be the numbers of their units and
be their class numbers. Let
and
be the representatives of their ideal class groups. Define
Notice that when
(e.g.,
),
is just the norm of any of the differences
. In general,
is a certain power of this norm and
is always an integer.
To state Gross-Zagier's theorem, let us introduce some notation. Let
. For a prime
, define
This is well-defined whenever
. More generally, if
has the prime factorization
with
, we define
Finally, set
This is well-defined whenever all primes
dividing
satisfy
. Now the main theorem is as follows.
, we know the corresponding
and
. So in this case,
In particular, for
,
and
, so we have
. The factors of
are tabulated in Table 2 , so we can conclude (after figuring out the sign) that
which agrees with our computation in Example 4.
, we know the corresponding
and
. So in this case,
In particular, for
, we have
. The factors of
are tabulated in Table 3 , so we can conclude (after figuring out the sign) that
which also agrees with our computation in Example 4.
As we have noticed, the prime factor of
is always a factor of
. In fact, we have the following interesting result concerning the function
([3, Exercise 13.15, 13.16]).
be a prime dividing
, then
divides a positive integer of the form
. In particular,
. Moreover,
and
.
for such
. Without loss of generality, we may assume
. But
since
for some
, therefore
.
¡õ
Now we can explain the phenomenon we observed in Table 1 . Suppose
is a prime dividing an integer singular modulus of discriminant
, or equivalently, dividing
, then by Corollary 1, we have
. So these singular moduli have relatively small prime factors, though their own values can be fairly huge.
Finally, let us come to the algebraic proof of Gross-Zagier's theorem. The proof proceeds locally. As the first step, Gross and Zagier relate the valuation of the difference of two
-values to the geometry of elliptic curves and reduce it to a counting problem of isomorphisms between elliptic curves. Next, a generalization of Deuring's lifting theorem will allow one to reduce the problem to counting certain subrings of the endomorphism ring of a supersingular elliptic curve. To complete the proof, Gross and Zagier give a convenient description of a maximal order and its subrings in the rational quaternion algebra ramified at
and a prime for explicit computation.
The first step can be viewed as an interesting geometrical interpretation of the difference of
-values.
be a complete discrete valuation ring whose quotient field has characteristic zero and whose residue field is algebraically closed and has characteristic
(e.g.,
). Let
be its uniformizer and
be its normalized valuation. Let
be elliptic curves defined over
with good reduction and
-invariants
. Denote the set of isomorphisms from
to
defined over
by
. Then
are isomorphic over the algebraically closed field
, otherwise both sides are zero. Denote
, then
.
Let us consider the case when
for simplicity. Change models for
with simplified Weierstrass equations 
By definition, we have
if and only if we can solve the congruences
simultaneously for some unit
. In this case
, and at least one of
and
is a unit in
since
has good reduction mod
.
If
is a unit in
, then
is also a unit. By changing models we may assume that
. Then
On the other hand, the congruences become
We may possibly modify
by
so that
is maximal. Then
We get
So the theorem holds in this case.
If
is a unit in
, then
is also a unit. Similarly by changing models we may assume that
. Then
where
is a primitive cube root of unity in
. On the other hand, the congruences become
We may possibly modify
by
or
so that
is maximal. Then
We get
This completes the proof.
¡õ
For simplicity, we will assume
is a prime from now on (for the general case, see [11]). Let
be the ring of integers of
. Let
be an elliptic curve over
with complex multiplication by
and with
-invariant
. For our purpose, we need to calculate
where
is an elliptic curve over
with complex multiplication by some ring
of discriminant
. We can rewrite
in a manner which only depends on
. Suppose
, then
is an endomorphism of
mod
, which has the same norm, trace and action on tangent space as
. Namely,
belongs to the set
Conversely, every element of
is of the form
for some unique
ensured by the following lifting theorem, which is a refinement of Deuring's lifting theorem ([12, 14.14]).
be an elliptic curve over
and
. Assume that
is a
-module of rank 2 and is integrally closed in its quotient field. Suppose
induces multiplication by a quadratic element
on
. If there exists
such that
then there exists an elliptic curve
over
and
, such that
reduces to
mod
and
induces multiplication by
on
. Moreover, if
is another lifting, then there is a commutative diagram
Now by Theorem 16, we reduce to the counting problem of
.
When
,
splits in
, so
has ordinary reduction mod
and
([12, 13.12]). But
contains no elements of discriminant
, so
is empty for all
. (Another way to say this: if two elliptic curves
and
with complex multiplication have the isomorphic reduction
, then the reduction
must be supersingular, since two different orders
and
have to embed into
simultaneously.)
So we only need to consider the case
and
has supersingular reduction. Then
is a maximal order in the rational quaternion algebra
ramified at
and
by Theorem 8. The algebra
can be desribed explicitly as a subring of
,
The subrings
can also be desribed explicitly. Using these descriptions, it turns out that in many cases
equals to
times the number of the solutions
(under certain conditions on
) of the equation
where we assume
is a prime . The more precise result is the following.
The main Theorem 14 now can be derived directly from Equation 2using the formula
Unfortunately, we will omit the details here.
[1]Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.
[2]Complex multimplication, Algebraic Number Theory, London Mathematical Society, 1967, 292-296.
[3]Primes of the Form $X^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication, John Wiley \& Sons, 1989.
[4]Algebraic Number Theory, Springer, 1994.
[5]Complex multimplication and explicit class field theory, 1996, Senior thesis, Harvard University.
[6]Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994.
[7]A First Course in Modular Forms, Springer, 2010.
[8]On singular moduli, J. reine angew. Math 355 (1985), no.2, 191--220.
[9]Modular Invariants Expressible in Terms of Quadratic and Cubic Irrationalities, Proc. London Math. Soc. 28 (1927), 53-69.
[10]Heegner points and derivatives of L-series, Invent. math 84 (1986), no.2, 225--320.
[11]Prime factorization of singular moduli, Brown University, 1984.
[12]Elliptic Functions, Springer, 1987.