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Abstract. In this mostly expository note, we explain a proof of Tate’s two conjectures [Tat65] for

algebraic cycles of arbitrary codimension on certain products of elliptic curves and abelian surfaces

over number fields.

1. Statement. Let X be a smooth projective variety over a finitely generated field F . Let Chr(X)

be the Chow group of codimension r algebraic cycles of X defined over F modulo rational equiva-

lence. Let F be a separable algebraic closure of F and ΓF := Gal(F/F ). Tate [Tat65, Conjecture 1]

made the following far-reaching conjecture (often known as the Tate conjecture), relating algebraic

cycles and ΓF -invariants of the `-adic cohomology of X.

Conjecture 1.1 (Tate I). For any 1 ≤ r ≤ dimX and for any prime ` 6= char(F ), the `-adic cycle

class map

Chr(X)⊗Q` → H2r(XF ,Q`(r))
ΓF

is surjective.

Let Chr
hom(X) be the quotient group of Chr(X) modulo `-adic homological equivalence. It is

further conjectured (and known when char(F ) = 0) that Chr
hom(X) is independent of `, and the

`-adic cycle class map is injective on Chr
hom(X) ⊗ Q` (see [Tat65, p.97]). In particular, when

char(F ) = 0, Tate I implies an isomorphism Chr
hom(X)⊗Q` ' H2r(XF ,Q`(r))

ΓF and thus

(1.1.1) rank Chr
hom(X) = dim H2r(XF ,Q`(r))

ΓF

for any prime `.

Tate [Tat65, Conjecture 2] further made a conjecture relating algebraic cycles to poles of zeta

functions (often known as the strong Tate conjecture). When F is a number field, we denote by

L(H2r(X)(r), s) the (incomplete) L-function associated to the compatible system {H2r(XF ,Q`(r))}
of ΓF -representations, which converges absolutely for Re(s) > 1. Then [Tat65, Conjecture 2]

specializes to the following.

Conjecture 1.2 (Tate II). Assume that F is a number field. Then for any 1 ≤ r ≤ dimX,

rank Chr
hom(X) = − ords=1 L(H2r(X)(r), s).

Tate I for divisors (r = 1) is known for various X, including abelian varieties over any finitely

generated fields ([Fal83, Zar75, Tat66]). Much less is known when r > 1. We refer to the surveys

[Tot17, Mil07, Tat94, Ram89] for a nice summary of known results. The goal of this short note
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is to present some examples of abelian varieties X over number fields for which Tate’s conjectures

hold for algebraic cycles in arbitrary codimension r.

Theorem 1.3 (Tate I). Assume that F is finitely generated with char(F ) = 0. Then Tate I holds

for any abelian variety X over F with simple factors all having dimension ≤ 2.

Theorem 1.4 (Tate II). Assume that F is a number field. Let E1, E2, E3, E4 be elliptic curves

over F . Let A be an abelian surface over F . Then Tate II holds for the following cases:

(i) F is totally real or imaginary CM and X = En1
1 × E

n2
2 for any n1 ≥ 1, n2 ≥ 0,

(ii) F is totally real or imaginary CM and X = En1
1 × E

n2
2 × E3 for any n1 ≥ 1 and 1 ≤ n2 ≤ 2.

(iii) F is totally real or imaginary CM and X = En1
1 × E

n2
2 × E3 × E4 for any 1 ≤ n1, n2 ≤ 2.

(iv) F is totally real and X = A, X = A2.

Remark 1.5. It is worth mentioning that the special case when X = En is a power of an elliptic

curve was considered by Tate himself [Tat65, p.106], and played an important role in his formulation

of the Sato–Tate conjecture.

Theorem 1.3 (Tate I) can be deduced from recent theorems on the Hodge conjecture and the

Mumford–Tate conjecture ([RM08, Lom16]), as mentioned e.g. in [Moo17, p.284]. Theorem 1.4

(Tate II) can be deduced from more recent potential automorphy theorems ([ACC+18, BCGP21])

and known cases of Langlands functionality, and should also be known to the experts. All these

ingredients are available in more generality, but to illustrate the ideas we do not aim for maximal

generality in the statement of the theorems.

2. Proof of Theorem 1.3 (Tate I). Choose an embedding F ↪→ C and view F as a subfield of

C. Since all simple factors of X have dimension ≤ 2, the Hodge conjecture for XC holds (in any

codimension r) by [RM08, Theorem 3.15]. In fact in this case all Hodge classes on XC are generated

by products of divisor classes. Also by [Lom16, Corollary 1.2], the Mumford–Tate conjecture for

X holds.

Now the desired result follows due to the well-known general fact (see e.g. [Can16, §6]) that the

Mumford–Tate conjecture for the abelian variety X over F together with the Hodge conjecture for

XC (in codimension r) implies Tate I (Conjecture 1.1) for X (in codimension r). In particular all

Tate classes on X are also generated by products of divisor classes.

Remark 2.1. We refer to the references in [RM08], [Lom16] for related previous works on the Hodge

and Mumford–Tate conjectures. When X is a product of elliptic curves, the Hodge conjecture was

proved in [Mur90] (see also [Lew99, Appendix B, §3]) and the same method should also apply to

prove Tate I.

3. Potential automorphy. Let F be a number field. Let V = {V`} and W = {W`} be compatible

systems of semisimple `-adic ΓF -representations (e.g., in the sense of strictly compatible systems of

`-adic representations of ΓF defined over Q of [BCGP21, §2.8]). Recall that V is potentially auto-

morphic if there exists a finite Galois extension L/F such that the restriction V |ΓL
is automorphic

(e.g., in the sense of [BCGP21, Definition 9.1.1]). We introduce the following variants of potential

automorphy.
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Definition 3.1. Let S be a nonempty set of rational primes. Let L/F be a finite Galois extension.

We say that V is S-strongly automorphic over L, if for any subextension L′/F of L/F with L/L′

solvable, the following conditions are satisfied:

(i) V |ΓL′ is automorphic.

(ii) Let π be an isobaric automorphic representation on GLn(AL′) associated to V |ΓL′ (n = dimV

and AL′ is the ring of adèles of L′). Write π = �k
i=1πi as an isobaric direct sum of cuspidal auto-

morphic representations on GLni(AL′) (n =
∑k

i=1 ni). Write V |ΓL′ = ⊕k
i=1Vi as the corresponding

direct sum decomposition into compatible systems of ΓL′-representations. Then the `-adic ΓL′-

representation Vi,` (i = 1, . . . k) is irreducible for any ` ∈ S. (Notice that the irreducibility of Vi,` is

conjectured but not known in general).

We say that V is S-strongly potentially automorphic, if V is S-strongly automorphic over L

for some finite Galois extension L/F . We say that V is strongly potentially automorphic, if V is

S-strongly potentially automorphic for some Dirichlet density one set S.

We say that V and W are jointly S-strongly potentially automorphic, if V and W are both

S-strongly automorphic over L for some finite Galois extension L/F . We say that V and W are

jointly strongly potentially automorphic, if V and W are jointly S-strongly potentially automorphic

for some Dirichlet density one set S.

Lemma 3.2. Let V = {V`} and W = {W`} be compatible systems of semisimple `-adic ΓF -

representations. Let S be a nonempty set of rational primes.

(i) Assume that V is S-strongly potentially automorphic. Then L(V, s) has meromorphic continu-

ation to all of C, and for any ` ∈ S,

dimV ΓF
` = − ords=1 L(V, s).

(ii) Assume that V and W are jointly S-strongly potentially automorphic. Then L(V ⊗W, s) has

meromorphic continuation to all of C, and for any ` ∈ S,

dim(V` ⊗W`)
ΓF = − ords=1 L(V ⊗W, s).

(iii) Assume that V has a finite direct sum decomposition V ' ⊕k
i=1Vi⊗Wi into tensor products of

compatible systems of ΓF -representations. Assume that Vi and Wi are jointly S-strongly potentially

automorphic for each i. Then L(V, s) has meromorphic continuation to all of C, and for any ` ∈ S,

dimV ΓF
` = − ords=1 L(V, s).

Remark 3.3. Lemma 3.2 should be known to the experts and the proof idea, using Brauer’s

induction theorem and known properties of automorphic L-functions, is an old one (see e.g. [Tay02,

HSBT10, Har09]). Notice that Item (i) also follows as a special case of Item (iii). We keep Item (i)

to illustrate the ideas.

Proof. (i) Let L/F be a finite Galois extension such that V is S-strongly automorphic over L. By

Brauer’s induction theorem, we may find a virtual decomposition

1ΓF
=

k∑
j=1

cjIndΓF
ΓLj

ψi,
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where cj ∈ Z, F ⊆ Lj ⊆ L with L/Lj solvable, and ψj is a 1-dimensional representation of

Gal(L/Lj) (j = 1, . . . , k). Since V is S-strongly automorphic over L, we know that for each j there

exists an isobaric direct sum of cuspidal automorphic representations πLj = �mi
i=1πLj ,i of GLn(ALj )

and a direct sum decomposition V |ΓLj
= ⊕mj

i=1VLj ,i into ΓLj -representations such that

L(V |ΓLj
, s) = L(s, πLj ) L(VLj ,i, s) = L(s, πLj ,i),

and each `-adic representation VLj ,i,` is irreducible for any ` ∈ S. Here L(s, πLj ) is the (incomplete)

standard L-function as in [GJ72] and has meromorphic continuation to all of C. Hence

L(V ⊗ IndΓF
ΓLj

ψj , s) = L(V |ΓLj
⊗ ψj , s) =

mj∏
i=1

L(VLj ,i ⊗ ψj , s) =

mj∏
i=1

L(s, πLj ,i ⊗ χj),

where χj is the automorphic character on GL1(ALj ) associated to ψj . It follows that

L(V, s) = L(V ⊗ 1ΓF
, s) =

k∏
j=1

mj∏
i=1

L(s, πLj ,i ⊗ χj)
cj

and thus L(V, s) has meromorphic continuation to all of C.

Since πLj ,i⊗χj is cuspidal, by [JS77] we know that L(s, πLj ,i⊗χj) has no zero or pole at s = 1,

unless πLj ,i ⊗ χj is the trivial representation in which case it has a simple pole at s = 1. Hence

− ords=1 L(V, s) equals the number of trivial representations among πLj ,i ⊗ χj weighted by cj , and

so we obtain

− ords=1 L(V, s) =
k∑

j=1

mj∑
i=1

cj dim HomΓLj
(1ΓLj

, VLj ,i,` ⊗ ψj,`),

for any ` ∈ S by the irreducibility of VLj ,i,`. This evaluates to

k∑
j=1

cj dim HomΓLj
(1ΓLj

, V`|ΓLj
⊗ ψj,`),

which by the Frobenius reciprocity equals

dim HomΓF
(1ΓF

, V`) = dimV ΓF
` .

(ii) Let L/F be a finite Galois extension such that both V and W are S-strongly automorphic over

L. By the same notation and argument in the proof of Item (i), we know that for each j there

exists an isobaric direct sum of cuspidal representations πLj = �
mj

i=1πLj ,i (resp. ΠLj = �
m′j
i′=1ΠLj ,i′),

together with a corresponding decomposition into ΓLj -representations V |ΓLj
' ⊕mj

i=1VLj ,i (resp.

W |ΓLj
' ⊕

m′j
i′=1WLj ,i′) such that each `-adic representation VLj ,i,` (resp. WLj ,i′,`) is irreducible for

any ` ∈ S. It follows that

L(V ⊗W, s) =

k∏
j=1

L(V ⊗W ⊗ 1ΓF
, s) =

k∏
j=1

mj∏
i=1

m′j∏
i′=1

L(s, πLj ,i × (ΠLj ,i′ ⊗ χj))
cj ,

where L(s, πLj ,i× (ΠLj ,i′ ⊗χj)) is the (incomplete) Rankin–Selberg L-function as in [JPSS83], and

thus L(V ⊗W, s) has meromorphic continuation to all of C.
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Since πLj ,i and ΠLj ,i⊗χj are cuspidal, we know that L(s, πLj ,i×(ΠLj ,i⊗χj)) has no zero at s = 1

by [Sha80] (see also [Mor85, Lemma 3.1], [Sar04, p. 721]). Also by [JS81, (4.6) and (4.11)] (see also

[MW89, Appendice], [CPS04, Theorem 2.4]), it has no pole at s = 1, unless πLj ,i ' (ΠLj ,i′ ⊗ χj)
∨

in which case it has a simple pole at s = 1. The latter happens if and only if VLj ,i ' (WLj ,i′⊗ψj)
∨.

Hence

− ords=1 L(V, s) =
k∑

j=1

mj∑
i=1

m′j∑
i′=1

cj dim HomΓLj
(1ΓLj

, VLj ,i,` ⊗WLj ,i′,` ⊗ ψj,`)

for any ` ∈ S by the irreducibility of VLj ,i,` and WLj ,i′,`. This evaluates to

k∑
j=1

cj dim HomΓLj
(1ΓLj

, (V` ⊗W`)|ΓLj
⊗ ψj,`),

which by the Frobenius reciprocity equals

dim HomΓF
(1ΓF

, V` ⊗W`) = dim(V` ⊗W`)
ΓF .

(iii) It follows directly from Item (ii) and the factorization L(V, s) =
∏k

i=1 L(Vi ⊗Wi, s). �

Lemma 3.4. Assume that F is a number field. Let E1, E2, E3, E4 be elliptic curves over F . Let A

be an abelian surface over F .

(i) If F is totally real or imaginary CM, then {Symk1 H1(E1,F ,Q`)} and {Symk2 H1(E2,F ,Q`)} are

jointly strongly potentially automorphic for any k1, k2 ≥ 0.

(ii) If F is totally real or imaginary CM, then {Symk1 H1(E1,F ,Q`)} and {Symk2 H1(E2,F ,Q`) ⊗
Symk3 H1(E3,F ,Q`)} are jointly strongly potentially automorphic for any k1 ≥ 0, 0 ≤ k2 ≤ 2, and

0 ≤ k3 ≤ 1.

(iii) If F is totally real or imaginary CM, then {Symk1 H1(E1,F ,Q`) ⊗ Symk3 H1(E3,F ,Q`)} and

{Symk2 H1(E2,F ,Q`) ⊗ Symk4 H1(E4,F ,Q`)} are jointly strongly potentially automorphic for any

0 ≤ k1, k2 ≤ 2 and 0 ≤ k3, k4 ≤ 1.

(iv) If F is totally real, then {Hk1(AF ,Q`)} and {Hk2(AF ,Q`)} are jointly strongly potentially

automorphic for any 0 ≤ k1, k2 ≤ 4.

Proof. (i) If one of E1 or E2 has CM, say E1 has CM, then {Symk1 H1(E1,F ,Q`)} is automorphic,

as an isobaric direct sum of automorphic characters on GL1(AF ), and possibly automorphic in-

ductions of automorphic characters on GL1(AK) for a quadratic extension K/F . In particular, we

know that {Symk1 H1(E1,F ,Q`)}|ΓL
is S-strongly automorphic over any finite Galois extension L/F

and any nonempty set S of primes. The result follows if E2 also has CM. If E2 has no CM, then

{H1(E2,F ,Q`)} is strongly irreducible in the sense defined before [ACC+18, Lemma 7.1.1] (i.e., for

any finite extension F ′/F , the representation H1(E2,F ,Q`)|ΓF ′ is irreducible for ` in a Dirichlet

density one set of primes), and we can apply [ACC+18, Corollary 7.1.11] to {Symk2 H1(E2,F ,Q`)}
together with [ACC+18, Proposition 6.5.13] to obtain the desired joint S-strong potential auto-

morphy for a Dirichlet density one set S of primes. If neither of E1 and E2 has CM, then the

desired result follows from the more general [ACC+18, Theorem 7.1.10] together with [ACC+18,
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Proposition 6.5.13]. (In the case F = Q, we may also directly apply [NT20, Theorem A (non-CM

case) and Theorem A.1 (CM case)]).

(ii) By the same argument in Item (i), there are a finite Galois extension L/F and a Dirichlet

density one set S of primes such that {Symki H1(Ei,F ,Q`)} is S-strongly automorphic over L for

any 1 ≤ i ≤ 3. Hence by the functorial products for GL(2) × GL(2) → GL(4) ([Ram00, Theorem

M]) and GL(2) × GL(3) → GL(6) ([KS02, Theorem A]), we know that {Symk2 H1(E2,F ,Q`) ⊗
Symk3 H1(E3,F ,Q`)} is also S-strongly automorphic over L for any 0 ≤ k2 ≤ 2 and 0 ≤ k3 ≤ 1.

The result then follows.

(iii) By the same argument in Item (ii), there are a finite Galois extension L/F and a Dirichlet

density one set S of primes such that {Symki H1(Ei,F ,Q`) ⊗ Symkj H1(Ej,F ,Q`)} is S-strongly

automorphic over L for any 0 ≤ ki ≤ 2 and 0 ≤ kj ≤ 1, which gives the result.

(iv) The result follows from [BCGP21, Theorem 9.3.1] and its proof. �

Remark 3.5. For each item of Lemma 3.4, the proof supplies a Dirichlet density one set S of

primes such that the joint S-strong potential automorphy holds. Since compatible systems in

Lemma 3.4 come from elliptic curves and abelian surfaces, one should also be able to prove directly

that the irreducible conditions required in Definition 3.1 (ii) hold for all primes `, and hence the

joint S-strong potential automorphy holds for the set S of all primes. For the purpose of the proof

of Theorem 1.4 (Tate II) below, any nonempty S suffices.

4. Proof of Theorem 1.4 (Tate II). Let 1 ≤ r ≤ dimX. Let V = {H2r(XF ,Q`(r))}. By

Theorem 1.3 (Tate I), we know from (1.1.1) that rank Chr
hom(X) = dimV ΓF

` for any prime `. Thus

it remains to show that dimV ΓF
` = − ords=1 L(V, s) for some prime `.

(i) By the Künneth formula and the decomposition of H1(Ei,F ,Q`)
⊗ki into symmetric powers of

H1(Ei,F ,Q`) (i = 1, 2), we have an isomorphism of semisimple ΓF -representations

H2r(XF ,Q`(r)) '
⊕

0≤ki≤ni
i=1,2

mk1,k2

(
Symk1 H1(E1,F ,Q`)⊗ Symk2 H1(E2,F ,Q`)

)
( k1+k2

2
),

where mk1,k2 ≥ 0 are certain multiplicities (nonzero only if k1 + k2 ≤ 2r is even). The result then

follows from Lemma 3.2 (iii) and Lemma 3.4 (i).

(ii) Similarly, set n3 = 1 then we have an isomorphism of semisimple ΓF -representations

H2r(XF ,Q`(r)) '
⊕

0≤ki≤ni
1≤i≤3

mk1,k2,k3

(
⊗1≤i≤3 Symki H1(Ei,F ,Q`)

)
( k1+k2+k3

2
),

where mk1,k2,k3 ≥ 0 are certain multiplicities (nonzero only if k1 + k2 + k3 ≤ 2r is even). The result

then follows from Lemma 3.2 (iii) and Lemma 3.4 (ii).

(iii) Similarly, the result follows from Lemma 3.2 (iii) and Lemma 3.4 (iii).

(iv) For X = A, the result follows from Lemma 3.2 (i) and Lemma 3.4 (iv). For X = A2, by the

Künneth formula, we have an isomorphism of semisimple ΓF -representations

H2r(XF ,Q`(r)) '
⊕

k1+k2=2r
0≤k1,k2≤4

(Hk1(AF ,Q`)⊗Hk2(AF ,Q`))(r).
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The result then follows from Lemma 3.2 (iii) and Lemma 3.4 (iv).

Remark 4.1. When X is an abelian surface of the type ResK/F E, where F is totally real, K/F

is a quadratic CM extension and E is an elliptic curve over K, Tate II was proved in [Vir15] using

a similar argument. We also refer to [Joh17, Tay20] for more detailed analysis for L-functions of

abelian surfaces.
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