Midterm I

roblem 1.	Problem 1.
TFFT TFFT	TFFT TFFT
Problem 2.	Problem 2.
b, e, c, a, d	b, e, c, a, d
roblem 3.	Problem 3.
b, e, c, a, d	b, e, c, a, d
Problem 4.	Problem 4.

(1)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{x + 2}{x - 3} = -4.$$

(2)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{2}{x^2 + 2x}\right) = \lim_{x \to 0} \frac{(x + 2) - 2}{x^2 + 2x} = \lim_{x \to 0} \frac{1}{x + 2} = 1/2.$$

(3)
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{x} = \lim_{x \to 0} \frac{(1 + 2x) - (1 - 2x)}{x(\sqrt{1 + 2x} + \sqrt{1 - 2x})} = \lim_{x \to 0} \frac{4}{\sqrt{1 + 2x} + \sqrt{1 - 2x}} = 2.$$

Problem 5.

- (1) $3x^2 x^{-4/3}$ (power rule)
- (2) $\frac{xe^x 1}{(x+1)^2}$ (quotient rule)
- (3) $-8x\sin x + 8\cos x$ (product rule).

Problem 6.

Since $(x^3 - x)' = 3x^2 - 1$, we know the slope of the tangent line of $y = x^3 - x$ at x = a is given by $3a^2 - 1$. Parallel lines have the same slopes, so we find

$$3a^2 - 1 = 11.$$

Hence $3a^2 = 12$, i.e., $a = \pm 2$. This gives two points $(a, f(a)) = \pm (2, 6)$, so there are two such lines by point-slope formula:

$$y = 11(x - 2) + 6, \quad y = 11(x + 2) - 6.$$

Problem 7.

Horizontal asymptote: y = 3, since dividing x^2 in both the top and bottom we obtain

$$\lim_{x \to \infty} \frac{2+3x^2}{6-8x+x^2} = \lim_{x \to \infty} \frac{2/x^2+3}{6/x^2-8/x+1} = 3.$$

Vertical asymptotes: x = 2, x = 4, since $f(x) = \frac{2+3x^2}{6-8x+x^2} = \frac{2+3x^2}{(2-x)(4-x)}$. Setting the bottom (2-x)(4-x) = 0 gives x = 2, 4 and so

$$\lim_{x \to 2} f(x) = \lim_{x \to 4} f(x) = \infty.$$