PRIME TWISTS OF ELLIPTIC CURVES

DANIEL KRIZ AND CHAO LI

ABSTRACT. For certain elliptic curves E/Q with E(Q)[2] = Z/2Z, we prove a criterion for prime
twists of F to have analytic rank 0 or 1, based on a mod 4 congruence of 2-adic logarithms of
Heegner points. As an application, we prove new cases of Silverman’s conjecture that there exists
a positive proposition of prime twists of E of rank zero (resp. positive rank).

1. INTRODUCTION

1.1. Silverman’s conjecture. Let E/Q be an elliptic curve. For a square-free integer d, we denote
by E@ /Q its quadratic twist by Q(v/d). Silverman made the following conjecture concerning the
prime twists of E (see [OS98], p.653|, [Ono97, p.350]).

Conjecture 1.1 (Silverman). Let E/Q be an elliptic curve. Then there exists a positive proportion
of primes € such that E© or EC-9 has rank =0 (resp. 7> 0).

Remark 1.2. Conjecture is known for the congruent number curve E : y?> = 23 — z. In fact,

E® has rank r = 0 if £ = 3 (mod 8) and » = 1 if £ = 5,7 (mod 8). This follows from classical
2-descent for = 0 and Birch [Bir70] and Monsky [Mon90] for r = 1 (see also [Ste75]).

Remark 1.3. Although Conjecture[I.1]is still open in general, many special cases have been proved.
For r = 0, see Ono [Ono97| and Ono-Skinner [OS98, Cor. 2| (including all elliptic curves with
conductor < 100). For r = 1, see Coates—Y. Li-Tian-Zhai [CLTZ15, Thm. 1.1].

In our recent work [KL16, Thm. 3.3|, we have proved Conjecture (for both r =0 and r = 1)
for a wide class of elliptic curves with E(Q)[2] = 0. The goal of this short note is to extend our
method to certain elliptic curves with E(Q)[2] = Z/2Z.

1.2. Main results. Let £/Q be an elliptic curve of conductor N. We will use K to denote an
imaginary quadratic field satisfying the Heegner hypothesis for N:

each prime factor ¢ of N is split in K.

We denote by P € E(K) the corresponding Heegner point, defined up to sign and torsion with
respect to a fixed modular parametrization 7g : Xo(N) — E. Let

f@) =) an(E)q" € 537 (Lo(N))
n=1

be the normalized newform associated to E. Let wp € Q}E/Q = HY(E/Q, Q') such that
mp(we) = f(q) - da/q-
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We denote by log,, . the formal logarithm associated to wg.
Our main result is the following criterion for prime twists of E of analytic (and hence algebraic)
rank O or 1.

Theorem 1.4. Let E/Q be an elliptic curve. Assume E(Q)[2] & Z/27 and E has no rational cyclic
4-isogeny. Assume there exists an imaginary quadratic field K satisfying the Heegner hypothesis for
N such that

|E5(F2)| - log,, (P)

(%) 2 splits in K and 5

#Z0 (mod 2).
Let S be the set of primes
S :={l12N : ¢ splits in K,|E(F¢)| # 0 mod 4}.
Let N be the set of signed primes
N ={d==L:(eS, any odd prime q||N splits in Q(v/d)}.
Then for any d € N, we have the analytic rank ron(E@W /K) = 1. In particular,

0, if w(ED/Q)=+1,
1, ifw(EYD/Q)=—-1.

where w(E® /Q) denotes the global root number of E(@ /Q.

7”an(E(d)/Q) = {

Remark 1.5. Recall that |E™(FFy)| denotes the number of Fy-points of the nonsingular part of the
mod ¢ reduction of E, which is |E(F,)| = £+ 1 — a,(E) if £ N, £+ 1 if £||N and ¢ if /2| N.

Remark 1.6. The assumption on Heegner points in Theorem forces ran(E/Q) < 1.
As a consequence, we deduce the following cases of Silverman’s conjecture.

Theorem 1.7. Let E/Q as in Theorem[1.4 Let ¢ : E — Ey:= E/E(Q)[2] be the natural 2-isogeny.
Assume the fields Q(E[2], Eo[2]), Q(vV—N), Q(\/q) (where q runs over odd primes q||N ) are linearly
disjoint. Then Conjecture holds for E/Q.

1.3. Novelty of the proof. The proof of [KL16, Thm. 3.3] mentioned above uses the mod 2
congruence between 2-adic logarithms of Heegner points on E and E(@ (recalled in below),
arising from the isomorphism of Galois representations E[2] 2 E(@[2]. For the congruence to be
nontrivial on both sides, one needs the extra factor |E(F,)| appearing in the formula to be odd for
¢|d. This is only possible when E(Q)[2] = 0.

When E(Q)[2] # 0, we instead take advantage of the exceptional isomorphism between the mod
4 semisimplified Galois representations E[4]* = E@[4]* and consequently a mod 4 congruence
between 2-adic logarithm of Heegner points. When F(Q)[2] = Z/27Z and E has no rational cyclic
4-isogeny, it is possible that the extra factor |E(Fy)| is even but nonzero mod 4. This is the key
observation to prove Theorem [I.4] The application Theorem [I.7] then follows by Chebotarev’s
density after translating the condition |E(F/)| # 0 (mod 4) into an inert condition for ¢ in Q(E2])

and Q(Ep[2]) (Lemma [4.1)).

1.4. Acknowledgments. The examples in this note are computed using Sage ([Sagl6]).
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2. EXAMPLES

Let us illustrate the main results by two explicit examples.

Example 2.1. Consider the elliptic curve (in Cremona’s labeling)
FE = 256b1 : y* = 23 — 2z

with E(Q)[2] = Z/2Z. It has j-invariant 1728 and CM by Q(i). The imaginary quadratic field
K = Q(v/—T) satisfies the Heegner hypothesis. The associated Heegner point yx = (—1,—1)
satisfies Assumption . The set S consists of primes ¢ such that £ = 1,2,4 (mod 7) and ¢ =5
(mod 8):

S =1{29,37,53,109,149,197,277,317,373,389, ..., }.
By Theorem [I.4] we have

Fan(BEEY/K) =1, for any £ € S.

We compute the global root number w(E*9 /Q) = —1 and conclude that

ran(EF9/Q) = 1, ran(EF™/Q) = 0, for any £ € 8.

Remark 2.2. Notice the two congruence conditions for £ € S are both necessary for the conclusion:
for example, we have ro,(E®)) = 2 for £ = 31 and 7,,(E(™) = 2 for £ = 5.

Example 2.3. Consider the elliptic curve
E=256al:y°>=23+2> -3z +1

with E(Q)[2] =2 Z/2Z. 1t has j-invariant 8000 and CM by Q(v/—2). The imaginary quadratic field
K = Q(+/—T7) satisfies the Heegner hypothesis. The associated Heegner point yx = (0,1) satisfies
Assumption . The 2-isogenous curve is

Ep = 256a2 : y* = 23 + 22 — 13z — 21.

We have Q(E[2]) = Q(Fo[2]) = Q(v2) and Q(v=N) = Q(i). Hence Q(E[2], Fo[2]) and Q(v—)
are linearly disjoint. Since there is no odd prime ¢||N, Theorem implies that Silverman’s
conjecture holds for F.

In fact, the set S in this case consists of primes ¢ such that ¢ = 1,2,4 (mod 7) and ¢ = 3,5
(mod 8):

S ={11,29,37,43,53,67,107,109, 149, 163, 179,197,211, 277,317,331, .. .}.
Computing the global root number gives

Tan(E(Z)/Q) =1, Tan(E(_e)/@) =0, for any £ € S.

3. PROOF OF THEOREM [L.4]

3.1. Congruences between Heegner points. We first recall the main theorem of [KL16].

Theorem 3.1. Let E and E' be two elliptic curves over Q of conductors N and N’ respective-
ly. Suppose p is a prime such that there is an isomorphism of semisimplified Gg := Gal(Q/Q)-
representations



for some m > 1. Let K be an imaginary quadratic field satisfying the Heegner hypothesis for both
N and N'. Let P € E(K) and P' € E'(K) be the Heegner points. Assume p is split in K. Then
we have

Ens F E/,ns F
H B ()| E( ol -log,, P =+ H BT (E)| -log,, ., P (mod p™).

14
LpNN'/M LpNN'/M
Here
M = H gordg(NN’)
£| gcd(N,N)
ag(E)=ap(E’) (mod p™)

3.2. Proof of Theorem For a prime £ f Nd, we have ay(E) = +ay(E@) since E@ is a
quadratic twist of E. Since E(Q)[2] # 0, we know that |E(F,)| and |EY(F)| are even since the
reduction mod £ map is injective on prime-to-¢ torsion. Hence if £ # 2, then a;(E), a;(E@®) are
also even. Since ag(E) = +ay(E@), we obtain the following mod 4 congruence

ae(E) = ay(E)  (mod 4), for any £{2Nd.
It follows that we have an isomorphism of Gg-representations
E[4]* =~ E@[4]%,

Now we can apply Theorem to ' = E@ p=2and m=2. By assumption, any prime ¢|2N
splits in K. By the definition of S, the prime ¢ = |d| splits in K. Notice the odd prime factors of
N =N (E(d)) are exactly the odd prime factors of Nd, thus K also satisfies the Heegner hypothesis
for N'.

Let £| ged(N, N’) be an odd prime. We have:

(1) if £||N, then ap(E),as(E@) € {£1} is determined by their local root numbers at ¢. By the
definition of NV, we know that ¢ splits in Q(v/d), and hence E/Q, and E® /Q, are isomorphic.
It follows that a,(E) = as(E@).
(2) if £2|N, then ay(F) = ag(E@) =0,
Therefore M is divisible by all the prime factors of ged(N, N'). Notice the odd part of ged(N, N')
equals to the odd part of IV, so the congruence formula in Theorem implies

[ns r(d),ns
(1) H E{S]FZ) -log,, P =+ H |E€(FZ)| . IngE(d> P (mod 4).
¢)2d ¢)2d

For ¢ = |d|, we have
[E(F)[#0  (mod 4)

by the definition of S. Now Assumption implies that the left-hand-side of is nonzero mod
4. Hence the right-hand-side of (1)) is also nonzero. In particular, the Heegner point P9 ¢ E(d)(K)
is non-torsion, and hence r,,(E¥/K) = 1 by the theorem of Gross-Zagier [GZ86] and Kolyvagin

[Kol90], [Kol88], as desired.
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4. PROOF OF THEOREM

4.1. Elliptic curves with partial 2-torsion and no rational cyclic 4-isogeny. Let F be an
elliptic curve of conductor N. Assume E(Q)[2] = Z/2Z. Then Q(E[2])/Q is the quadratic extension
Q(v/AEg), where A is the discriminant of a Weierstrass equation of E.

Let ¢ : E — Ey := E/E(Q)[2] be the natural 2-isogeny. By [Klal7, Lem. 4.2 (i)], F has no
rational cyclic 4-isogeny if and only if Q(Ep[2])/Q is a quadratic extension. Assume we are in this

case, then Q(Eyp[2]) = Q(v/Ag,).

Lemma 4.1. Let £1 N be a prime. Then the following are equivalent:
(1) |E(F,)[ #0 (mod 4),

(2) E(F,)[2] = Eo(Fo)[2] = Z/2Z,

(3) € is inert in both Q(E[2]) and Q(Ey|[2]).

Proof. Since E and Ej are isogenous and ¢ is a prime of good reduction, we know that |E(F,)| =
|Eo(Fe)|. So |E(F¢)| # 0 (mod 4) if and only if |[Eg(F,)| # 0 (mod 4). In this case, certainly
(2) holds. Conversely, if (2) holds, then E(F,)[4] = Z/2Z (otherwise E(F,)[4] = Z/4Z, and thus
Eo(F,)[2] = Z/27 x 7.)27. generated by ¢(E(F,)[4]) and the kernel of the dual isogeny ¢ : Eg — E),
hence |E(Fy)| # 0 (mod 4). We have shown that (1) is equivalent to (2).

Moreover, E(F,)[2] = Z/2Z (resp. Z/2Z x Z/2Z) if and only if Qy(E[2])/Q; is a quadratic
extension (resp. the trivial extension), if and only if ¢ is inert (resp. split) in Q(E[2]). Similarly we
know that Eo(F,)[2] = Z/2Z if and only if £ is inert in Q(Ep[2]). It follows that (2) is equivalent to
(3). O

4.2. Proof of Theorem By assumption, the fields Q(E[2], Eo[2]), Q(y/q) (¢ runs all odd
prime ¢||N) are linearly disjoint. Since K satisfies the Heegner hypothesis for NV and 2 splits in K,
we know the discriminant dx of K is coprime to 2NV, hence K is also linearly disjoint from the fields
Q(E[2], Ep[2]) and Q(\/q)’s. It follows from Chebotarev’s density that there is a positive density
set 7 of primes ¢ 1 2N such that

(1) ¢ is split in K,

(2) ¢ 1is inert in both Q(E[2]) and Q(Ey|[2]),

(3) ¢ is split in Q(,/q) for any odd prime ¢||N.

By Lemma we know 7 C 8. For £ € T, we consider d = ¢* := (—1)(*~1/2¢. By the quadratic
reciprocity law, we know that odd ¢||N is split in Q(+v/¢*) if and only if ¢ is split in Q(vq). In
particular, for any ¢ € T, we have ¢* € N. Now Theorem implies that ra(E¢)/K) = 1.
Moreover,

0, w(B)/Q)=+1,

Tan(E(Z*)/@) = {1’ w(E(E*)/Q) -1

Since Q(v/¢*) has discriminant coprime to 2N, we have the well known formula

w(E)/Q) = wl(E/) - ()

-N
By the quadratic reciprocity law, we obtain

w(E)/Q) = w(E/Q) - ()

5



By assumption, Q(v/—N) is also linearly disjoint from the fields considered above, hence the global
root number w(E") /Q) takes both signs for a positive proportion of £ € T by Chebotarev’s density.
Therefore ., (F (z*)/ Q) takes both values 0 and 1 for a positive proportion of £ € T, as desired.
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