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Abstract. Let E : y2 = F (x) be an elliptic curve over Q defined by a monic irreducible
integral cubic polynomial F (x) with negative square-free discriminant −D. We determine its
2-Selmer rank in terms of the 2-rank of the class group of the cubic field L = Q[x]/F (x).

When the 2-rank of the class group of L is at most 1 and the root number of E is −1, the
Birch and Swinnerton-Dyer conjecture predicts that E(Q) should have rank 1. We construct
a canonical point in E(Q) using a new Heegner point construction. We naturally conjecture
it to be of infinite order. We verify this conjecture explicitly for the case D = 11, and propose
an approach towards the general case based on a mod 2 congruence between elliptic curves
and Artin representations.
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1. Introduction

1.1. p-Selmer rank one conjecture. Given an elliptic curve E defined over Q, the rational
points E(Q) form a finitely generated abelian group by the Mordell–Weil theorem. It is a
central question in number theory to understand the rank of E(Q), known as the algebraic
rank

ralg(E/Q) := rkE(Q).

Let p be a prime number. Recall that we have the p-descent exact sequence (see [Sil09, X.4])

(1.1) 0→ E(Q)/pE(Q)→ Selp(E/Q)→Ш(E/Q)[p]→ 0,

where Selp(E/Q) is the p-Selmer group and Ш(E/Q) is the Tate–Shafarevich group. We define
the p-Selmer rank of E/Q to be

sp(E/Q) := dimFp Selp(E/Q)− dimFp E(Q)[p].
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It follows from the p-descent sequence (1.1) that

ralg(E/Q) = sp(E/Q)− dimFp Ш(E/Q)[p].

Due to the Cassels–Tate pairing, the finiteness of the p-primary part Ш(E/Q)[p∞] would imply
that Ш(E/Q)[p] has even Fp-dimension, hence sp(E/Q) and ralg(E/Q) have the same parity.
In particular, the finiteness of Ш(E/Q)[p∞] would imply the following conjecture, which we
call the p-Selmer rank one conjecture.

Conjecture 1.2. If sp(E/Q) = 1, then ralg(E/Q) = 1.

Conjecture 1.2, despite looking simple, was only recently proved for p ≥ 5 under certain
assumptions ([Zha14], [Ski14], [SZ14], [Wan14], [CW15], [Ven16]). These known cases of Con-
jecture 1.2 played a key role in the recent breakthrough of Bhargava–Skinner–Zhang ([BSZ14])
that a majority of elliptic curves over Q satisfy the rank part of the Birch and Swinnerton-Dyer
conjecture.

On the other hand, very little about Conjecture 1.2 is known for p = 2, though the 2-
Selmer group is the easiest to compute in practice and provides as of present the best tool for
computing E(Q). More recently there has also been growing interest in studying the 2-Selmer
group and its variation in families (e.g., Klagsbrun–Mazur–Rubin [KMR13],[KMR14]), in view
of its connection with Hilbert’s tenth problem ([MR10]) and Goldfeld’s conjecture ([KL16],
[Smi17]).

The theme of this article is explore Conjecture 1.2 for a large class of elliptic curves. We
now turn to our main results.

1.3. 2-Selmer groups and 2-class groups. Let F (x) ∈ Z[x] be an irreducible monic cubic
polynomial with negative and square-free discriminant −D. Let E be given by the Weierstrass
equation y2 = F (x). Our first main result is to determine the 2-Selmer rank s2(E/Q) in terms
of the 2-part of the ideal class group of the cubic field L = Q(x)/F (x) and the global root
number ε(E/Q) of E/Q.

Theorem 1.4 (Theorem 2.18). Let Cl(L) be the ideal class group of the cubic field L =

Q[x]/F (x). Let k = dimF2 Cl(L)[2] be its 2-rank. Then

s2(E/Q) = k or k + 1,

depending on whether the root number ε(E/Q) = (−1)k or (−1)k+1.

1.5. Heegner points on elliptic curves of conductor 4D. Theorem 1.4 has the following
immediate consequence (applied to k = 0 or 1, only the upper bound on s2(E/Q) is needed).

Corollary 1.6. Assume ε(E/Q) = −1. If the 2-rank of Cl(L) is at most 1, then s2(E/Q) = 1.
In this case, Conjecture 1.2 implies that ralg(E/Q) = 1.

This consequence naturally raises two challenges:

(1) to construct a rational point P ∈ E(Q) when ε(E/Q) = −1,
(2) to verify the constructed point P is of infinite order when the 2-rank of Cl(L) is at most 1.

In §3 we complete (1) under an additional assumption that E has Kodaira type IV at 2. This
assumption allows us to pin down the conductor of E to be the minimal N = 4D, and interest-
ingly also forces the root number ε(E/Q(i)) to be −1. In this case E admits a parametrization
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by a Shimura curve X associated to the quaternion order of reduced discriminant 4D,

(1.2) Z + Zi+ Zj + Zij, i2 = −1, j2 = D, ij = −ji.

Our second main result is a construction of a canonical point P ∈ E(Q(i)) (Theorem 3.23),
using Heegner points on X associated to the imaginary quadratic field Q(i) with the following
desired property as in (1).

Theorem 1.7 (Theorem 3.21). P lies in E(Q) if and only if ε(E/Q) = −1.

1.8. A conjecture on the canonical point P . In view of the Gross-Zagier formula ([GZ86],
[YZZ13]), we naturally conjecture as in (2):

Conjecture 1.9 (Conjecture 4.1). Assume ε(E/Q) = −1. If the 2-rank of Cl(L) is at most
1, then P ∈ E(Q) is of infinite order.

Conjecture 1.9 seems quite difficult to us. The known general approach of showing that a
Heegner point on E is of infinite order is usually by showing the L-function L(E, s) vanishes
to order 1 at s = 1, either via explicit forms of the Gross–Zagier formula, or via its p-adic
variants (e.g., the BDP formula [BDP13], [LZZ14]) and Iwasawa theory. However, the input of
Conjecture 1.9 is purely algebraic — in terms of the 2-class group of cubic fields, and a more
direct link with Heegner points or L-functions seems missing at the moment.

Nevertheless, we provide a piece of evidence of Conjecture 1.9 by verifying it for the case
D = 11 in Example 4.2. We end this article by proposing a potential approach towards
Conjecture 1.9, based on an unusual mod 2 congruence between elliptic curves and Artin
representations (§5).

1.10. Novelty of the methods and remarks on the proofs.

1.10.1. 2-Selmer groups and 2-class groups. The idea that there should be a connection be-
tween the 2-Selmer group and the 2-class group of the cubic field L has been, of course, known
for a long time. For example, the classical work of Brumer and Kramer [BK77, 7.1] gives a
general upper bound on the 2-Selmer rank in terms of the 2-class group and other arithmetic
invariants of E. See also Schaefer [Sch96] (and references therein) for the connection between
the p-Selmer group and the p-class group of the p-torsion field for general p.

Thus the novelty of Theorem 1.4 lies in making this connection explicit and sharp for the
large class of elliptic curves under consideration.

1.10.2. Heegner points. Since quadratic twisting E : y2 = F (x) by a quadratic field K does not
preserve the square-freeness of the discriminant of F (x) unless K = Q(i), we are naturally led
to construct Heegner points over Q(i). However, the elliptic curve E necessarily has additive
reduction at 2 and 2 is ramified in Q(i), which forbids the classical construction of Heegner
points associated to Eichler orders. See recent works Kohen–Pacetti [KP15], Cai–Chen–Liu
[CCL16] and Longo–Rotger–de Vera-Piquero [LRd16] addressing different aspects of this issue.

The order (1.2) we naturally consider is in fact not a classical Eichler order, and thus leads to
a new construction of Heegner points. The associated Shimura curve X is an example of more
general Shimura curves of “level p2” associated to a non-maximal order at a prime p ramified
in the quaternion algebra studied in [Li15, Chap 5], and also an example of Hijikata-Pizer-
Shemanske curves more recently studied in [LRd16]. Though our new construction of Heegner
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points easily generalizes to general prime p, we stick to p = 2 for simplicity, in connection with
the concrete problem at hand.

1.10.3. A canonical rational point. For classical modular curves X0(N) (or Shimura curves
of Eichler level), there is essentially one modular parameterization X0(N) → E, which is
given by the associated newform fE of level N . More precisely, the group of homomor-
phisms HomQ(J0(N), E) defined over Q has rank 1. Another new feature of our work is
that this 1-dimensionality no longer holds for the Shimura curve X. In fact, we show that
HomQ(JX , E) has exactly rank 2 (Proposition 3.13 (1)), so there is no canonical choice of a
modular parametrization JX → E.

Nevertheless, we are able to construct a canonical point in E(Q(i)) by utilizing the entire
rank 2 space of homomorphisms. The observation is that the Shimura curve X admits extra
automorphisms by the symmetric group S3 and we are able to determine the S3-action on
HomQ(JX , E) (Proposition 3.13 (3)). To do so, we use the key fact that there is a unique
admissible representation of PGL2(Q2) has conductor 2 (§3.10 (5)), which allows us to make
the Jacquet–Langlands correspondence completely explicit. Notice that this uniqueness is quite
special and fails for admissible representations of conductor 2 of PGL2(Qp) when p > 2.

1.10.4. The case D = 11. The computation of Heegner points on Shimura curves is more
difficult than its counterpart on modular curves. When D = 11, to compute the Heegner
points on X we utilize the results of Elkies for Heegner points on a classical Shimura curve
Y (of Eichler level), and a degree 3 map X → Y . The same method also allows us to verify
Conjecture 1.9 for some other small values of D. Unfortunately, when D is large (X has large
genus), this computation becomes infeasible.

1.11. Acknowledgments. I am deeply grateful to Benedict Gross for his constant encourage-
ment and advice throughout this project. I would also like to thank Noam Elkies for helpful
conversation on Shimura curves computations and Barry Mazur and Yifeng Liu for useful com-
ments on an earlier draft of this article. The examples in this article are computed using Sage
([S+13]).

2. 2-Selmer groups and 2-class groups

Let E/Q be an elliptic curve. We impose the following assumption in this §2.

Assumption 2.1. Suppose E has equation y2 = F (x), where F (x) = x3 + a2x
2 + a4x+ a6 is

an integral polynomial which

(1) is irreducible, and
(2) has negative and square-free discriminant −D.

2.2. Properties of the cubic field L. Let L = Q[x]/F (x). Then L has the following
elementary properties:

(1) Since F (x) is irreducible and has negative discriminant, we know that F (x) has Galois
group S3. The field L = Q[x]/F (x) is a complex cubic field, i.e., L∞ := L⊗Q R ∼= R× C.

(2) Since discF (x) = −D is square-free, we know that D ≡ 3 (mod 4), L has discriminant
dL = discF (x) = −D, and L has ring of integers A = Z[x]/F (x).
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(3) Since L has a unique real embedding, we know that the unit group A× has rank one by
Dirichlet’s unit theorem. Let uL be a fundamental unit. Then A× = uZL × {±1}. After
possibly replacing uL by −uL, we may assume uL > 0. After possibly replacing uL by u−1L ,
we may further assume uL > 1.

2.3. Properties of the elliptic curve E. The elliptic curve E : y2 = F (x) has the following
elementary properties:
(1) Since F (x) is irreducible, we have E(Q)[2] = 0.
(2) The 2-torsion field Q(E[2]), as the Galois closure of L, is an S3-extension over Q.
(3) E has discriminant ∆ = −24D. Since no 12th power divides ∆, the equation y2 = F (x) is

minimal. It follows that E has bad reduction precisely at p | 2D.
(4) For p | D, since D is square-free, by comparing the power of p appearing on both sides of

c34 − c26 = −210 · 33 ·D,

we see that p - c4 (even for p = 3). Hence E has multiplicative reduction of type I1 at
p | D. In particular, the component group of the Néron model of E/Qp is trivial.

(5) We compute that c4 = 16(a22 − 3a4), so 2 | c4 and E has additive reduction at 2.
(6) Therefore the conductor of E is of the form N = 22+δD for some δ ≥ 0. The order of N

at 2 is determined by the Ogg–Saito formula ([Sil94, 11.1])

(2.1) ord2(N) = ord2(∆) + 1−m = 5−m,

where m is the size of the component group of the Néron model of E/Q2.
Our main goal in this §2 is to relate the 2-Selmer group of E/Q and the 2-part of the ideal

class group of the cubic field L, under Assumption 2.1.

2.4. 2-Selmer groups. Recall that for an elliptic curve E/Q, we have the global and local
Kummer exact sequences, fitting into the following commutative diagram

0 // E(Q)/2E(Q)
δ //

��

H1(Q, E[2]) //

∏
v resv

��

H1(Q, E)[2] //

��

0

0 //
∏
v

E(Qv)/2E(Qv)

∏
v δv //

∏
v

H1(Qv, E[2]) //
∏
v

H1(Qv, E)[2] // 0.

Here the vertical maps are given by the product of restriction maps over all places v of Q.

Definition 2.5. The 2-Selmer group

Sel2(E/Q) ⊆ H1(Q, E[2])

consists of cohomology classes whose restriction at v lies in the image of the local Kummer
map δv for every v:

Sel2(E/Q) = {c ∈ H1(Q, E[2]) : resv(c) ∈ im(δv)}.

Colloquially, the 2-Selmer group is cut out by the local conditions

im(δv) ⊆ H1(Qv, E[2])

coming from local points for all v. By definition, we have an injection

E(Q)/2E(Q) ↪→ Sel2(E/Q).
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The 2-Selmer group, due to its local nature, is easier to understand and the 2-Selmer rank
s2(E/Q) provides an upper bound for the rank of E(Q).

2.6. Kummer maps. Our goal is this subsection to give an explicit description of the global
and local Kummer maps in terms of the cubic field L.

Lemma 2.7. We have an exact sequence of finite group schemes over Q,

1→ E[2]→ ResL/Q µ2
N−→ µ2 → 1,

where N is induced by the norm map from L to Q. We have an isomorphism

(2.2) H1(Q, E[2]) ∼= (L×/(L×)2)N=2.

Here (L×/(L×)2)N=2 consists of all classes in L×/(L×)2 with square norms to Q×.

Proof. It suffices to check that we have an exact sequence of GQ-modules on the level of Q-
points. Suppose F (x) has the three roots x1, x2, x3 ∈ Q. Then the Q-points of E[2] consist
of Pi = (xi, 0), (i = 1, 2, 3) and ∞. The Galois group GQ acts trivially on ∞ and permutes
the three points Pi via its Gal(Q(E[2])/Q) ∼= S3-action on xi. Also, the group of Q-points of
ResL/Q µ2 is isomorphic to µ2×µ2×µ2, where the three factors are indexed by the three roots
xi and the Galois action permutes the three factors in the same way. The norm map simply
multiplies the three factors and respects the GQ-action. One sees that the map

∞ 7→ (1, 1, 1), P1 7→ (1,−1,−1), P2 7→ (−1, 1,−1), P3 7→ (−1,−1, 1)

gives an injective homomorphism of GQ-modules E[2] → ResL/Q µ2. Moreover, its image is
exactly the kernel of the norm map. This finishes the proof of the first part.

Taking the long exact sequence in Galois cohomology, we obtain

H0(Q,ResL/Q µ2)
N−→ H0(Q, µ2)→ H1(Q, E[2])→ H1(Q,ResL/Q µ2)

N−→ H1(Q, µ2).

Since H0(Q,ResL/Q µ2) = µ2(L) = {±1}, H0(Q, µ2) = µ2(Q) = {±1} and L/Q has odd
degree, we know that the first map is surjective. By Kummer theory, we know that

H1(Q,ResL/Q µ2) ∼= L×/(L×)2, H1(Q, µ2) ∼= Q×/(Q×)2.

Therefore

H1(Q, E[2]) = ker(N : L×/(L×)2 → Q×/(Q×)2) = (L×/(L×)2)N=2.

This finishes the proof of the second part. �

Proposition 2.8. Under the isomorphism (2.2), the global Kummer map δ can be described
as

δ : E(Q)/2E(Q)→ (L×/(L×)2)N=2, P 7→ x(P )− β,
where x(P ) is the x-coordinate of P and β is the image of x in L = Q[x]/F (x).

Proof. Let e2 : E[2] × E[2] → µ2 be the Weil pairing. Then we see that the homomorphism
E[2]→ ResL/Q µ2 in Lemma 2.7 is also given by

P 7→ (e2(P, P1), e2(P, P2), e2(P, P3)).

The rational function fi = x− xi has the divisor (fi) = 2Pi − 2∞ (i = 1, 2, 3) and there exists
some rational function gi (over Q) such that fi ◦ [2] = g2i (see [Sil09, III.8]). The Weil pairing



2-SELMER GROUPS AND 2-CLASS GROUPS 7

e2 is then given by

e2(P, Pi) =
gi(X + P )

gi(X)
,

where X ∈ E(Q) is any point such that g(X+P ) and g(X) are both defined and nonzero. For
P ∈ E(Q), we choose Q ∈ E(Q) such that [2]Q = P . Then δ(P ) corresponds to the cocycle
{σ 7→ Qσ −Q} ∈ H1(Q, E[2]). Taking P = Qσ −Q and X = Q, we know that

(2.3) e2(Q
σ −Q,Pi) =

gi(Q)σ

gi(Q)
.

By the identification H1(Q,ResL/Q µ2) ∼= (L×/(L×)2)N=2 coming from Kummer theory, E-
quation (2.3) implies that

δ(P ) ≡ gi(Q)2 mod (L×)2

under the embedding L ↪→ Q associated to xi. But by the construction of gi, we have gi(Q)2 =

fi(P ) = x(P )− xi. Hence
δ(P ) ≡ x(P )− xi mod (L×)2

under the embedding L ↪→ Q associated to xi, which finishes the proof. �

Base changing to Qv in Lemma 2.7 and Proposition 2.8 , we obtain the analogous explicit
description of the local Kummer maps δv.

Proposition 2.9. The local Kummer maps for E are given by

δv : E(Qv)/2E(Qv)→ H1(Qv, E[2]) ∼= (L×v /(L
×
v )2)N=2, P 7→ x(P )− β,

where β is the image of x in Lv = Qv[x]/F (x).

Remark 2.10. Even though E(Q)[2] = 0, it is possible that E(Qv)[2] 6= 0. For a nonzero point
P ∈ E(Qv)[2], the expression x(P ) − β does not lie in L×v and it should be interpreted using
the group structure: write P = P1 − P2 as the difference of two points P1, P2 ∈ E(Qv) which
are not 2-torsion, then δv(P ) = (x(P1)− β)/(x(P2)− β).

2.11. Local conditions. In this subsection, we explain how Assumption 2.1 allows us to
determine explicitly the local condition im(δv) for each place v.

Lemma 2.12. Let p be a prime. Then the valuation of δp(P ) is even for any P ∈ E(Qp),
namely,

δp(P ) ∈ (A×p /(A
×
p )2)N=2,

where A = Z[x]/F (x) is the ring of integers of L and Ap = A⊗ Zp.

Proof. Let P ∈ E(Qp) and write x = x(P ) for short.
First consider the case p - D. So p is unramified in L. There are three cases:

(1) Lp ∼= Qp3 is the unramified cubic extension of Qp. From y2 = F (x), we know that
2 ordp(y) = 3 ordp(x− β), hence ordp(x− β) is even.

(2) Lp ∼= Qp2 ×Qp, where Qp2 is the unramified quadratic extension of Qp. Write β = (γ, c),
then γ 6≡ c (mod p), ordp(γ) = 0 and ordp(c) ≥ 0. From y2 = F (x), we know that
2 ordp(y) = ordp(x− γ) + ordp(x− c). There are two cases:
• If ordp(x) < 0, then ordp(x − γ) = ordp(x − c) = ordp(x). Therefore 2 ordp(y) =

3 ordp(x), hence ordp(x− γ) = ordp(x− c) = ordp(x) are all even.
• If ordp(x) ≥ 0, then ordp(x− γ) = 0. So ordp(x− c) = 2 ordp(y) is even.
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(3) Lp ∼= Qp × Qp × Qp. Write β = (c1, c2, c3). Then ci 6≡ cj (mod p) whenever i 6= j.
Similarly, there are two cases:
• If ordp(x) < 0, then ordp(x − ci) = ordp(x). Therefore 2 ordp(y) = 3 ordp(x), hence

ordp(x− ci) = ordp(x) are all even.
• If ordp(x) ≥ 0, then ordp(x − ci) ≥ 0. Since ci 6≡ cj (mod p), at least two of the

ordp(x − ci)’s are zeros. Thus 2 ordp(y) = ordp(x − c1) + ordp(x − c2) + ordp(x − c3)
implies the third one must have even valuation as well.

Now consider the case p | D. So p is ramified in L. Since D is square-free, we know that
Lp ∼= Kp × Qp, where Kp is a ramified quadratic extension of Qp. Denote by p the prime for
Kp and write β = (γ, c). Then γ 6≡ c (mod p), ordp(γ) > 0 and ordp(c) ≥ 0. From y2 = F (x),
we know that 2 ordp(y) = ordp(x− γ) + ordp(x− c). We argue similarly:
• If ordp(x) < 0, then ordp(x − γ) = 2 ordp(x) and ordp(x − c) = ordp(x). Hence ordp(x) is
even, therefore both ordp(x− γ) and ordp(x− c) are even.
• If ordp(x) ≥ 0, then ordp(x− γ) ≥ 0 and ordp(x− c) ≥ 0. Since γ 6≡ c (mod p), at least one
of ordp(x− γ) and ordp(x− c) is zero. Hence both of them are even. �

Remark 2.13. When p 6= 2, Lemma 2.12 can be proved by a more “pure thought” argument:
since the component group of Néron model of E/Qp is trivial (2.3 (4)), the local condition at
p corresponds to the unramified cohomology H1

ur(Qp, E[2]) ([GP12, Lemma 6]), which consists
of the units (A×p /(A

×
p )2)N=2 under the isomorphism (2.2). Here we preferred the above direct

computational proof using the explicit description of δp in Proposition 2.9, which depends on
less machinery and also treats the case p = 2.

Proposition 2.14. We have
(1) For v = ∞, both E(R)/2E(R) and (L×∞/(L

×
∞)2)N=2 are trivial. In particular, the local

condition im(δ∞) is trivial.
(2) For v = p > 2, the local condition im(δp) = (A×p /(A

×
p )2)N=2.

(3) For v = p = 2, the local condition im(δ2) has index 2 in (A×2 /(A
×
2 )2)N=2 and contains all

units ≡ 1 (mod 4).

Proof. For v =∞, since L∞ ∼= R× C, we know that

(L×∞/(L
×
∞)2)N=2 = (R×/(R×)2)N=2 = {1}.

For v = p, we know from Lemma 2.12 that im(δp) ⊆ (A×p /(A
×
p )2)N=2. Since the norm map

is surjective on the units, we know that

#(A×p /(A
×
p )2)N=2 =

#A×p /(A
×
p )2

#Z×p /(Z×p )2
.

Notice that #Z×p /(Z×p )2 is 22 or 2 depending on whether p = 2 or not. If Lp is a product of
k fields (k = 1, 2, 3), then #A×p /(A

×
p )2 is 2k+3 or 2k depending on whether p = 2 or not. It

follows that

#(A×p /(A
×
p )2)N=2 =

{
2k−1, p 6= 2,

2k+1, p = 2.

Since E(Qp) has a finite index subgroup isomorphic to Zp, we know that

#E(Qp)/2E(Qp) =

{
#E(Qp)[2], p 6= 2,

2 ·#E(Qp)[2], p = 2.
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All claims except the last one then follow because #E(Qp)[2] is the same as 1 plus the number
of Qp-rational solutions of F (x) = 0 , which is 2k−1 in all cases. To see the last claim that
im(δ2) contains all the units ≡ 1 (mod 4), let us consider a point P ∈ Ê(2Z2), where Ê is the
formal group of E over Q2 given by the minimal equation. For a general elliptic curve E with
minimal equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

the general formula ([Sil94, IV.1]) reads

x(P ) = z−2 − a1z−1 − a2 − a3z +O(z2),

where z = −x/y is the parameter for the formal group. In our case a1 = 0, therefore
(2.4)
δ2(P ) = x(P )−β = z−2−a2−β+O(z) ≡ 1−(a2+β)z2+O(z3) ≡ 1−(a2+β)z2 mod (L×2 )2,

where the last equality is because z ∈ 2Z2 and the units ≡ 1 (mod 8) are squares. Since
F (x) mod 2 cannot be a product of three distinct linear factors in F2[x], we know that 2 does
not split in L. Now one can then check directly that im(δ2) contains the units ≡ 1 (mod 4)

with square norm in the remaining two cases:

• If L2 = Q8, then all units ≡ 1 (mod 4) with square norms are actually squares. So the claim
that im(σ2) contains all such units is trivial.
• If L2 = Q4 × Q2, then any class (α, a) ≡ 1 (mod 4) with square norm is represented by

(α,Nα) with α ≡ 1 (mod 4). There is a unique nontrivial class of units α ≡ 1 (mod 4)

modulo squares, represented by 1 + 4γ if we write β = (γ, c). It follows from (2.4) that
im(δ2) contains this class. �

2.15. 2-class groups of cubic fields. We now combine all the local conditions to give both
upper and lower bounds for the 2-Selmer group.

Lemma 2.16. Let

M1 = {α ∈ L×/(L×)2 : L(
√
α)/L is unramified},

and
M2 = {α ∈ L×/(L×)2 : α > 0, (α) = I2, I ⊆ L a fractional ideal}

be subgroups of (L×/(L×)2)N=2. Then under the isomorphism (2.2), we have

M1 ⊆ Sel2(E/Q) ⊆M2.

Proof. Elements of M2 clearly have square norms since Nα = N(I)2. If α ∈ Sel2(E/Q), then
by Proposition 2.14, α > 0 and α has even valuation at all finite places. The latter implies
that there exists a fractional ideal I such that (α) = I2. Thus α ∈M2.

Let α ∈ L×/(L×)2. For p odd, Lp(
√
α)/Lp is unramified if and only if α has even valuation.

For p = 2, L2(
√
α)/L2 is unramified if and only if α has even valuation and is represented by a

unit ≡ 1 (mod 4). From this description we see that M1 ⊆ M2 and elements M1 have square
norm. It also follows from this description and Proposition 2.14 that M1 ⊆ Sel2(E/Q). �

Class field theory supplies information about the two groups M1 and M2.

Lemma 2.17. Let Cl(L) be the ideal class group of the cubic field L = Q[x]/F (x). Let
k = dimF2 Cl(L)[2]. Then M1 (resp. M2) is an elementary 2-group of size 2k (resp. 2k+1).
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Proof. Kummer theory tells us that

M1
∼= Hom(Gal(M/L), µ2),

where M is obtained by adjoining the square roots of all α ∈ M1 to L, which is the maximal
unramified extension of L of exponent 2. By class field theory, we have

Gal(M/L) ∼= Cl(L)[2].

Since #(Cl(L)/2 Cl(L)) = # Cl(L)[2], M1 is an elementary 2-group of size 2k.
Suppose α ∈M2 such that (α) = I2. Then the assignment α 7→ I gives a well defined map

M2 → Cl(L)[2].

This map is clearly surjective and its kernel is given by the positive units

{α ∈ A×/(A×)2 : α > 0} = uZL/u
2Z
L
∼= Z/2Z.

Since # Cl(L)[2] = 2k, we know that M2 is an elementary 2-group of size 2k+1. �

Now we are ready to prove the main theorem of this §2.

Theorem 2.18. Let Cl(L) be the ideal class group of the cubic field L = Q[x]/F (x). Let
k = dimF2 Cl(L)/2 Cl(L). Then

s2(E/Q) = k or k + 1,

depending on whether the root number ε(E/Q) = (−1)k or (−1)k+1.

Proof. It follows from Lemma 2.16 and 2.17 that s2(E/Q) = k or k+ 1. By [Mon96, Theorem
1.5], the parity of s2(E/Q) is determined by the root number ε(E/Q), that is,

(−1)s2(E/Q) = ε(E/Q).

The desired result then follows. �

2.19. Examples. We end this section with several explicit examples illustrating Theorem 2.18.

Example 2.20. Consider the elliptic curve (in Cremona’s labeling)

E = 1132a1 : y2 = F (x) = x3 + x2 − 5x+ 4.

The polynomial F (x) is irreducible and has discriminant −D = −283 and thus Assumption 2.1
holds. The elliptic curve E has discriminant ∆ = −24 · 283, conductor N = 22 · 283. The
cubic field L = Q[x]/F (x) has discriminant dL = −283 and class number 2. We remark that
L has the smallest discriminant among all class number 2 cubic fields. Theorem 2.18 predicts
that s2(E/Q) = 1 or 2 according to the root number. In fact, ε(E/Q) = +1, ralg(E/Q) =

s2(E/Q) = 2 and the two points (−1, 3) and (1,−1) generate E(Q).

Example 2.21. Consider the elliptic curve

E = 26284a1 : y2 = F (x) = x3 + x2 − 9x+ 16.

The polynomial F (x) is irreducible and has discriminant−D = −6571 and thus Assumption 2.1
holds. The elliptic curve E has discriminant ∆ = −24 · 6571, conductor N = 22 · 6571. The
cubic field L = Q[x]/F (x) has discriminant dL = −6571 and class group Cl(L) ∼= (Z/2Z)2. We
remark that L has the smallest discriminant among all cubic fields with class group (Z/2Z)2.
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Theorem 2.18 predicts that s2(E/Q) = 2 or 3 according to the root number. In fact, ε(E/Q) =

−1, ralg(E/Q) = s2(E/Q) = 3 and the three points (−4, 2), (−3, 5), (−1, 5) generate E(Q).

Example 2.22. Consider the elliptic curve

E : y2 = F (x) = x3 − 49x+ 169.

The polynomial F (x) is irreducible and has discriminant −D = −37 · 8123 and thus As-
sumption 2.1 holds. The elliptic curve E has discriminant ∆ = −24 · 37 · 8123, conductor
N = 1202204 = 22 · 37 · 8123. The cubic field L = Q[x]/F (x) has discriminant dL = −37 · 8123

and class group Cl(L) ∼= (Z/2Z)3. We remark that L has the smallest discriminant among all
cubic fields with class group (Z/2Z)3. Theorem 2.18 predicts that s2(E/Q) = 3 or 4 according
to the root number. In fact, ε(E/Q) = +1, ralg(E/Q) = s2(E/Q) = 4 and the four points
(−8, 7), (−7, 13), (−5, 17), (−3, 17) generate E(Q).

3. Heegner points on elliptic curves of conductor 4D

Throughout this §3, we will impose the following assumption.

Assumption 3.1. Suppose E has equation y2 = F (x), where F (x) = x3 + a2x
2 + a4x+ a6 is

an integral polynomial which

(1) is irreducible, and
(2) has negative and square-free discriminant −D.

We further assume that

(3) E/Q2 has Kodaira type IV.

Remark 3.2. The additional assumption (3) that E/Q2 has Kodaira type IV means that the
special fiber of the minimal regular model of E/Q2 consists of three P1’s intersecting at a
triple point. It implies that m = 3 in Equation (2.1). Hence ord2(N) = 2 and E has the
minimal possible conductor N = 4D. It also implies that the j-invariant of E has positive
2-adic valuation ([Sil94, Table 4.1]). In particular, E has potentially good reduction at 2.

Example 3.3. If we assume {
a6 ≡ 1 (mod 4),

a24 ≡ 4a2 (mod 8),

then it follows from Tate’s algorithm [Sil94, IV.9] that E has Kodaira type IV over Q2. In
fact, making a change of variable y′ = y + 1, x′ = x, we obtain the following equation

y′2 + 2y′ = x′3 + a2x
′2 + a4x

′ + (a6 − 1),

satisfying 2 | a′3, a′4, a′6. We compute that

b′2 = 4a2, b′4 = 2a4, b′6 = 4a6, b′8 = 4a2a6 − a24, c′4 = 16(a22 − 3a4).

So
2 | c′4, 22 | a′6, 23 | b′8, 23 - b′6,

and Tate’s algorithm outputs the Kodaira type IV. Moreover, the component group of the
Néron model over Q2 is either Z/3Z or µ3. It is Z/3Z if and only if x2 + x − (a6 − 1)/4 ≡ 0

(mod 2) has a solution, if and only if a6 ≡ 1 (mod 8).
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3.4. Root numbers. As we will see, the additional assumption (3) also pins down the root
number of E over the quadratic field Q(i) to be −1 (Proposition 3.7).

Lemma 3.5. The field Q2(E[3]) generated by 3-torsion points of E is the tamely ramified
S3-extension Q2(ζ3,

3
√

∆).

Proof. The assumption of Kodaira type IV at 2 allows us to compute Q2(E[3]) as follows.
Since the component group of the Néron model of E/Q2 is either Z/3Z or µ3, we know
that E has a subgroup Z/3Z over the unramified quadratic extension M = Q2(ζ3). Let
G = Gal(M(E[3])/M) ⊆ GL2(F3). Then by the Weil pairing, the inertia subgroup I ⊆ G acts
as a subgroup of {( 1 ∗

0 1 )} ⊆ GL2(F3), hence I is either trivial or of order 3. But Q2(E[3]) always
contains 3

√
∆ (see [Ser72, p. 305]), so Q2(E[3])/Q2 is ramified and I is of order 3. Notice that

Q2(ζ3,
3
√

∆), as the Galois closure of Q2(
3
√

∆), has Galois group S3, so we know that G cannot
be cyclic of order 3 or 6. Since I is normal in G and G/I is cyclic, it follows that G ∼= S3 by
inspection on possible subgroups of GL2(F3). Therefore Q2(E[3]) = Q2(ζ3,

3
√

∆). �

Remark 3.6. It also follows from this lemma directly that ord2(N) = 2, which reproves the
Ogg–Saito formula in this case.

Proposition 3.7. The root number ε(E/Q(i)) of E/Q(i) is −1.

Proof. Recall that the root number is the product of local root numbers over all places v

ε(E/Q(i)) =
∏
v

εv(E/Q(i)).

We compute all the local root numbers (cf. [Dok13, 3.4]) as follows.
(1) The local root number of an elliptic curve is always −1 at an infinite place.
(2) For p - 2D, the elliptic curve E has good reduction at p and thus εp(E/Q(i)) = +1.
(3) For p | D, the elliptic curve E has multiplicative reduction at p.
• When p lies above p ≡ 3 mod 4, Q(i)p is the unramified quadratic extension of Qp and
thus E has split multiplicative reduction at p. Therefore εp(E/Q(i)) = −1. Because
D ≡ 3 (mod 4) is square-free, there are an odd number of primes p | D lying above
p ≡ 3 (mod 4). Hence the product over all p above p ≡ 3 (mod 4) is −1.
• When p lies above p ≡ 1 (mod 4), E may have split or nonsplit multiplicative reduction
at p. But since p = pp′ splits as two primes in Q(i) and εp(E/Q(i)) = εp′(E/Q(i)), we
know that the product over all p above p ≡ 1 (mod 4) is +1.

(4) When p | 2, we know the 3-torsion points E[3] generate a S3-extension over the wildly
ramified quadratic extension Q(i)p = Q2(i) by Lemma 3.5. The local root number is −1

in this case by [DD08, Remark 5].
Combining all the local results gives the desired root number ε(E/Q(i)) = −1. �

Now let
E∗ : y2 = F ∗(x) = x3 − a2x2 + a4x− a6

be the quadratic twist of E by Q(i). By Proposition 3.7, we have

ε(E/Q) · ε(E∗/Q) = ε(E/Q(i)) = −1.

It follows that the functional equations for L(E/Q, s) and L(E∗/Q, s) have different signs
ε(E/Q) and ε(E∗/Q). We denote by E± = E or E∗ so that ε(E±/Q) = ±1.
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Notice that E∗ also satisfies Assumption 2.1. Moreover, the cubic field defined byQ[x]/F ∗(x)

is isomorphic to L = Q[x]/F (x). When the 2-rank of Cl(L) is at most 1, the 2-Selmer rank
s2(E

−/Q) = 1 by Theorem 2.18. The 2-Selmer rank one conjecture (Conjecture 1.2) then
predicts that

Conjecture 3.8. If the 2-rank of Cl(L) is at most 1, then ralg(E−/Q) = 1.

We pursue a canonical construction of a point (conjecturally) of infinite order using Shimura
curves in the sequel.

Remark 3.9. Our construction below works well for any elliptic curve E/Q with conductor
N = 4D and ε(E/Q(i)) = −1. We assume (3) of Assumption 3.1 only for concreteness.

3.10. Explicit Jacquet–Langlands correspondence. By the modularity theorem, there is
an automorphic representation π =

⊗
v πv of GL2(A) associated to the elliptic curve E, where

A is the ring of adeles of Q. It can be characterized as follows:
(1) π has trivial central character.
(2) π∞ is a holomorphic discrete series with Harish-Chandra parameter 1

2 (corresponding to
weight 2 modular forms).

(3) For p - 2D, πp is unramified. Its Satake parameter has characteristic polynomial X2 −
apX + p, where ap = p+ 1−#E(Fp).

(4) For p | D, πp is the Steinberg representation or the unramified quadratic twist of the
Steinberg representation, depending on whether εp(E/Q) = −1 or εp(E/Q) = +1.

(5) For p = 2, π2 has conductor 2 (since ord2(N) = 2). It cannot be a tamely ramified principal
series, since there are no tamely ramified characters of Q×2 ! Therefore π2 is a depth zero
supercuspidal representation, which is compactly induced from PGL2(Z2) using the unique
discrete series representation of PGL2(F2) ∼= S3, the sign character S3 → {±1}.

Let B = (−1, D)Q be the rational quaternion algebra

Q + Qi+ Qj + Qij, i2 = −1, j2 = D, ij = −ji.

Then B is split at ∞ and is ramified at primes in

Σ = {2} ∪ {p | D : p ≡ 3 (mod 4)}.

Notice that Σ has even cardinality since D ≡ 3 (mod 4). Let

(3.1) R = Z + Zi+ Zj + Zij ⊆ B.

Then R is an order of reduced discriminant 4D. We now give a description of the local orders
Rp = R⊗ Zp and the normalizers of R×p .

Proposition 3.11. Let Wp = NB×p
(R×p )/R×p Q×p , where NG(H) denotes the normalizer of H

in G. Then

Wp
∼=


Z/2Z, p | D,
S3, p = 2,

{1}, otherwise.

Proof. We have the following cases:
• For p - 2D, Bp is isomorphic to the matrix algebra M2(Qp) and Rp is a maximal order
M2(Zp) (up to conjugation). Hence NB×p

(R×p ) = GL2(Zp) ·Q×p = R×p ·Q×p and Wp is trivial.
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• For p | 2D, p 6∈ Σ, Bp is isomorphic to M2(Qp) and Rp is an order of reduced discriminant
pZp, which is

(
Zp Zp

pZp Zp

)
(up to conjugation). Therefore R×p is the standard Iwahori subgroup

of GL2(Qp) and NB×p
(R×p )/R×p Q×p ∼= Z/2Z generated by the element

(
0 1
p 0

)
.

• For odd p ∈ Σ, Bp is a quaternion algebra over Qp and Rp is the maximal order of Bp. Hence
NB×p

(R×p )/R×p Q×p ∼= Z/2Z is generated by a uniformizer of Bp.
• For p = 2, since R2 has reduced discriminant 4Z2, it is the unique index 2 suborder of the
maximal order O2 of B2,

R2 = {x ∈ O2 : (x mod m2) ∈ F2 ⊆ F4 = O2/m2},

where m2 is the maximal ideal of O2. Then NB×2
(R×2 )/R×2 Q

×
2
∼= B×2 /R

×
2 Q
×
2
∼= S3, which is

generated by the order 2 class of a uniformizer and the cyclic quotient O×2 /R
×
2
∼= F×4 /F

×
2
∼=

Z/3Z. �

Remark 3.12. Since Rp is a local Eichler order of reduced discriminant p for any p 6= 2 (for
background on Eichler orders, see [AB04, 1.2]) and Eichler orders are determined by its local-
izations ([AB04, 1.51]), we know that there is a unique Eichler order S such that

Sp = Rp for p 6= 2, S2 = O2.

Then S is the unique Eichler order of reduced discriminant 2D containing R and R ⊆ S is the
unique index 2 suborder, given by

R = {x ∈ S : (x mod m2) ∈ F2 ⊆ F4 = O2/m2}.

The Jacquet–Langlands correspondence associates to π an automorphic representation

σ = σf ⊗ σ∞ =
⊗
v

σv

of B×(A) of the same conductor 4D. We can characterize it as follows:
(1) σ has trivial central character.
(2) σ∞ ∼= π∞ is a holomorphic discrete series with Harish-Chandra parameter 1

2 (corresponding
to weight 2 modular forms).

(3) For p - 2D, we have B×p ∼= GL2(Qp) and σp ∼= πp is unramified. Its Satake parameter has
characteristic polynomial X2 − apX + p, where ap = p+ 1−#E(Fp).

(4) For p | 2D, p 6∈ Σ, we also have B×v ∼= GL2(Qv) and σv ∼= πv. Since σp has conductor 1 and

R×p is the standard Iwahori subgroup of GL2(Qp), the fixed space σR
×
p

p is 1-dimensional.

The group Wp acts on δR
×
p

p via the sign or the trivial character depending on whether πp
is the Steinberg representation or the unramified quadratic twist of the Steinberg repre-
sentation.

(5) For odd p ∈ Σ, since σp has conductor 1, the fixed space σR
×
p

p is a 1-dimensional represen-
tation of Wp. It is either the trivial or the sign character depending on whether πp is the
Steinberg representation or the unramified quadratic twist of the Steinberg representation.

(6) For p = 2, since σ2 has conductor 2 (ord2(N) = 2), we have σR
×
2

2 6= 0. Since π2 is
supercuspidal, we know that σ2 is the unique 2-dimensional irreducible representation of
B×2 /R

×
2 Q
×
2
∼= S3.

Let R̂× = (R⊗ Ẑ)×. The following proposition follows immediately from the previous local
description of σ.
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Proposition 3.13.
(1) The space of invariants σR̂×f is 2-dimensional.

(2) For p | D, Wp
∼= Z/2Z = 〈wp〉 acts on σR̂×f via 2 copies of the character

wp 7→
(
−1

p

)
εp(E/Q).

(3) For p = 2, W2
∼= S3 acts on σR̂×f via the unique 2-dimensional representation of S3.

3.14. Shimura curves and Heegner points. Let H± = C − R be the union of the upper
and lower half plane. Associated to the order R we have a Shimura curve

X = R×\H±,

where R× acts on H± via an embedding R× ↪→ (B⊗R)× ∼= GL2(R). Let T/Q be the maximal
torus in B× induced by the natural embedding Z[i] ↪→ R (so T is split by Q(i)). Let M be the
GL2(R)-conjugates of the natural homomorphism h0 : T (R) = C× ↪→ GL2(R), then M ∼= H±
and h0 is naturally identified with i ∈ H+. The Shimura curve X has the adelic description

(3.2) X ∼= B×(Q)\M ×B×(Af )/R̂×.

It is a well-known fact due to Shimura [Shi67] that the points of X classify abelian surfaces
together with endomorphisms by R and this moduli interpretation provides the Shimura curve
X with a canonical smooth projective model over Q.

Remark 3.15. Shimura curves associated to Eichler orders are well studied before. Let Y be
the Shimura curve associated to the Eichler order S (Remark 3.12). Then the natural covering
map X → Y has degree [S×2 : R×2 ] = [F×4 : F×2 ] = 3.

Definition 3.16. Let K/Q be an imaginary quadratic field with an embedding τ : OK ↪→ R.
Then the induced homomorphism h : (K ⊗ R)× = C× ↪→ (B ⊗ R)× ∼= GL2(R) corresponds
to a point yK on X, known as a Heegner point. Notice that yK depends on the choice of the
embedding τ . In terms of the moduli interpretation, yK corresponds to an abelian surface
which is isomorphic to a product of two elliptic curves with complex multiplication by OK .
By the theory of complex multiplication, yK is defined over the Hilbert class field of K.

We specialize to the case K = Q(i) and the natural embedding

τ : OK = Z[i] ↪→ R = Z + Zi+ Zj + Zij.

The associated Heegner point yK is represented by the point [h0, 1] under the double quotient
(3.2) and it is K-rational since K has class number one.

The finite groupW =
∏
p|4DWp acts on X as automorphisms defined over Q. The generator

wp of Wp for p | D are known as the Atkin–Lehner involution.

Proposition 3.17. Let w =
∏
p|D wp ∈W . Then w(yK) = yK , the complex conjugate of yK .

Proof. In view of the moduli interpretation, the point yK corresponds to the complex conjugate
embedding τ̄ : Z[i] ↪→ R of τ . Since jij−1 = −i, we know that conjugating τ by j ∈ B× gives
τ̄ and thus jyK = yK . On the other hand, the reduced norm of j2 is −D, so we see that

jR×p Q×p /R×p Q×p =

{
wp, p | D,
1, p - D.
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It follows that jyK = j[h0, 1] = [h0, w] = w(yK). We conclude that w(yK) = yK . �

Proposition 3.18. Each point in the set W (yK) = {σ(yK), σ ∈ W} has a stabilizer of order
2 (contained in W2) under the action of W . In particular, W (yK) has size 3 · 2#{p|D} and
W2(yK) has size 3.

Proof. The stabilizer of yK = [h0, 1] under the action of B× is T (Q) = Q(i)× ⊆ B×. Since Q(i)

is unramified at p 6= 2, it follows that for p 6= 2, Qp(i)
×R×p /R

×
p Q×p = {1} and thus Wp acts on

W (yK) freely. For p = 2, Q(i) is ramified at 2 and Q2(i)
×R×2 /R

×
2 Q
×
2
∼= Z/2Z is generated by

the class of a uniformizer of Q2(i). So W2 acts on yK with a stabilizer of order 2. �

3.19. Uniformization by Shimura curves. Let JX = Jac(X) be the Jacobian of X and
H = HomQ(JX , E) be the group of homomorphisms (defined over Q) from JX to E, then W
acts on JX and H. Notice that H is a free abelian group and by [YZZ13, §3.2.3], we have

H ⊗ C ∼= σR̂
×

f ,

as W2
∼= S3-representations. We know from Proposition 3.13 that σR̂×f is the irreducible 2-

dimensional representation of S3, thus H is a free abelian group of rank 2. In particular, the
elliptic curve E is uniformized by the Shimura curve X, in two independent ways which cannot
be distinguished from each other.

3.20. Heegner points on elliptic curves. Let D0 be the free abelian group of degree 0
divisors supported on the K-rational points W (yK). The following theorem shows that the
image of these divisors under the projection maps JX → E lies in the desired subgroup E−(Q)

of E(Q(i)).

Theorem 3.21. Let d ∈ D0 and φ ∈ H. Then φ(d) ∈ E−(Q) ⊆ E(Q(i)).

Proof. For any d ∈ D0, it follows from Proposition 3.17 that wd = d. Therefore

φ(d) = φ(d) = φ(σd) = φσ(d) = w(φ)(d).

By Proposition 3.13, this is equal to∏
p|D

(
−1

p

)
εp(E/Q) · φ(d).

But ε2(E/Q) = −1 and
∏
p|D
(−1
p

)
= −1 since D ≡ 3 (mod 4), we obtain that

φ(d) = −ε(E/Q) · φ(d).

Hence φ(d) = φ(d) if and only if ε(E/Q) = −1. In other words, the image lies in E−(Q). �

The pairing between two free abelian groups

〈 , 〉 : H ×D0 → E(Q(i)), 〈φ, d〉 = φ(d)

is bilinear and satisfies 〈φσ, d〉 = 〈φ, σd〉 for any σ ∈W . Hence it induces a map

H ⊗Z[W ] D
0 → E(Q(i)),

whose image lies in E−(Q) by Theorem 3.21.



2-SELMER GROUPS AND 2-CLASS GROUPS 17

3.22. A canonical rational point. We now use the extra automorphisms in W2 to produce
a canonical (up to sign) rational point P in E−(Q). Let D0

2 ⊆ D0 be the subgroup of divisors
supported on the set of three points W2(yK).

Theorem 3.23. H ⊗Z[W2] D
0
2 is a free abelian group of rank one.

Proof. There are two possibilities for the integral S3-representationH: it is either the A2-lattice

A2 = {a1e1 + a2e2 + a3a3 :
∑

ai = 0} ⊆ Ze1 ⊕ Ze2 ⊕ Ze3

or its dual
A∨2 = Hom(A2,Z) = Ze1 ⊕ Ze2 ⊕ Ze3/Z(e1 + e2 + e3),

where S3 permutes the basis vectors {e1, e2, e3} in the natural way. On the other hand, by
Proposition 3.18, W2(yK) consists of three points. Hence as a W2

∼= S3-representation, D0
2 is

isomorphic to the A2-lattice.
If H = A∨2 , then the natural pairing between A2 and A∨2 induces an isomorphism

H ⊗Z[W2] D
0
2
∼= A2 ⊗Z[S3] A

∨
2
∼= Z.

It remains to check that the case H = A2, i.e., it remains to show that

A2 ⊗Z[S3] A2
∼= Z.

Since A2 is freely generated by the two vectors u = e1− e2 and v = e2− e3, it suffices to check
that u ⊗ u, v ⊗ v, u ⊗ v and v ⊗ u in A2 ⊗Z[S3] A2 generate a free abelian group of rank one.
In fact, we have

u⊗ u = (e1 − e2)⊗ (e1 − e3 + e3 − e2) = σ12(e1 − e2)⊗ σ12(e1 − e3)− u⊗ v = −2u⊗ v,

v ⊗ v = (e2 − e3)⊗ (e2 − e3) = σ13(e2 − e3)⊗ σ13(e2 − e3) = u⊗ u,
and

u⊗ v = (e1 − e2)⊗ (e2 − e3) = σ13(e1 − e2)⊗ σ13(e2 − e3) = v ⊗ u,
where σij ∈ S3 denotes the transposition switching ei and ej . It follows that

v ⊗ v = u⊗ u = −2u⊗ v, v ⊗ u = u⊗ v,

and thus A2 ⊗Z[S3] A2 is freely generated on one element u⊗ v. �

Finally, we define our desired canonical rational point P ∈ E−(Q) to be the image of the
generator (up to sign) of H ⊗Z[W2] D

0
2.

4. A conjecture on the canonical point P

In view of Conjecture 3.8, we propose the following conjecture.

Conjecture 4.1. If the 2-rank of Cl(L) is at most 1, then P ∈ E−(Q) has infinite order.

We now verify this conjecture for an explicit example.

Example 4.2. Consider the case D = 11. The Shimura curve X associated to the quaternion
order of discriminant 44 has genus 2. The Shimura curve Y associated to the maximal order
of discriminant 22 has genus 0. The degree 3 map X → Y (Remark 3.15) is ramified at the 4
elliptic points of order 3 on Y . Elkies in 2007 computed the elliptic points of Y (see [Elk08]
for his method). We can then deduce that X has equation

−y2 = x6 − 7x4 + 59x2 + 11
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and the three elliptic points in W2(yK) are ∞, (1, 8i) and (−1, 8i) . The Jacobian JX is
(2, 2)-isogenous to E × Ẽ, where

E = 44a1 : y2 = x3 + 7x2 + 59x− 11, Ẽ = 44a2 : y2 = x3 − 59x2 − 77x− 121,

and the map JX → E × Ẽ is induced from the two maps

X → E, (x, y) 7→ (−x2, y), X → Ẽ, (x, y) 7→
(
−11

x2
,
11y

x3

)
.

The two elliptic curves E, Ẽ are 3-isogenous to each other and we see that HomQ(JX , E) is
indeed of rank 2. The cubic field L has discriminant −44 and class number hL = 1. The root
number ε(E/Q) = +1. The quadratic twist of E by Q(i) has equation

E− = 176c1 : y2 = x3 − 7x2 + 59x+ 11.

As predicted by Conjecture 3.8, we have ralg(E−/Q) = 1. As predicted by Conjecture 4.1,
the canonical point P = (1, 8) ∈ E−(Q) we constructed is indeed a point of infinite order,
generating a subgroup of index 2 in E−(Q).

5. A mod 2 congruence between elliptic curves and Artin representations

5.1. A mod 2 congruence. The mod 2 Galois representation ρ̄ = ρ̄E,2 : GQ → GL2(F2) ∼= S3
can also be viewed as a 2-dimensional irreducible Artin representation σ via an embedding
S3 ↪→ GL2(C). This Artin representation σ has dihedral image and thus is induced from the
imaginary quadratic field K = Q(

√
−D). Then σ is associated to a weight one newform with

nebentypus the quadratic character εK , which is a Hecke theta series associated to K. On the
other hand, there is a weight two newform f with trivial nebentypus associated to the elliptic
curve E by the modularity theorem. By construction we have a congruence f ≡ h (mod 2).

Example 5.2 (cf. [Ser77, 7.3]). Consider the elliptic curve

E = 92a1 : y2 = F (x) = x3 + x2 + 2x+ 1.

The polynomial F (x) is irreducible and has square-free and negative discriminant −D = −23

and thus Assumption 2.1 holds. The elliptic curve E has discriminant ∆ = −24 ·23, conductor
N = 22 · 23. The cubic field

L = Q[x]/(x3 + x2 + 2x+ 1)

has discriminant dL = −23, hence the Artin representation σ has conductor N(σ) = 23. The
class number of L is 1 and we have s2(E/Q) = 0 as predicted by Theorem 2.18.

The the relevant Hecke character can be viewed as an order 3 character on the ideal class
group Cl(K). We remark that K is the cubic field of smallest (in the sense of the absolute
value) discriminant with class number 3. The three ideal classes in Cl(K) are represented by
the three integral binary quadratic forms of discriminant dK = −23,

x2 + xy + 6y2, 2x2 ± xy + 3y2,
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of order 1 and 3 respectively. We find that h(z) is the following simple linear combination of
theta series associated to these quadratic forms:

h(z) =
1

2

 ∑
m,n∈Z

qm
2+mn+6n2 −

∑
m,n∈Z

q2m
2+mn+3n2


= q − q2 − q3 + q6 + q8 − q13 − q16 + q23 − q24 + q25

+ q26 + q27 − q29 − q31 + q39 − q41 − q46 − q47 + q48 + q49 − q50 · · ·

We remark that σ is the irreducible 2-dimensional Artin representation of smallest conductor
([Ser77, 8.1]). Moreover, h(z) can be written as the classical eta product:

h(z) = η(z)η(23z) = q
∏
n≥1

(1− qn)(1− q23n),

where
η(z) = q1/24

∏
n≥1

(1− qn) =
∑
n≥1

(
12

n

)
q

n2

24

is Dedekind’s eta function.
The first few Hecke eigenvalues of the newforms f(z) ∈ S2(92) and h(z) ∈ S1(23, ε−23) are

listed in Table 1. We see that ap ≡ bp (mod 2) for p 6= 2.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
ap(f) 0 1 0 2 0 −1 −6 2 −1 −3 5 8 3 8 9
bp(h) −1 −1 0 0 0 −1 0 0 1 −1 −1 0 −1 0 −1

Table 1. E = 92a1

Example 5.3. Notice the above mod 2 congruence does not require the conductor of E to be
of the form N = 4D. Consider the elliptic curve

E = X0(11) = 11a1 : y2 + y = x3 − x2 − 10x− 20,

which has the smallest conductor 11 among all elliptic curves over Q. It has discriminant
∆ = −11. The cubic field

L ∼= Q[x]/(x3 − x2 + x+ 1)

has discriminant dL = −22 ·11. Hence the Artin representation σ has conductor N(σ) = 22 ·11.
The ring class group of the quadratic order of discriminant −44 in K = Q(

√
−11) has order

3, represented by the three binary quadratic form of discriminant −44,

2x2 + 11y2, 3x2 ± 2xy + 4y2

of order 1 and 3 respectively. We find that h(z) is the following simple linear combination of
theta series associated to these quadratic forms:

h(z) =
1

2

 ∑
m,n∈Z

q2m
2+11n2 −

∑
m,n∈Z

q3m
2+2mn+4n2


= q − q3 − q5 + q11 + q15 − q23 + q27 − q31 − q33 − q37 + 2q47 + q49 + · · ·
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Moreover, h(z) is the classical eta product

h(z) = η(2z)η(22z) = q
∏
n≥1

(1− q2n)(1− q22n).

The newform f(z) ∈ S2(11) is also a classical eta product

f(z) = η2(z)η2(11z) = q
∏
n≥1

(1− qn)2(1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 − 2q12

+ 4q13 + 4q14 − q15 − 4q16 − 2q17 + 4q18 + 2q20 + 2q21 − 2q22

− q23 − 4q25 − 8q26 + 5q27 − 4q28 + 2q30 + 7q31 + 8q32 − q33

+ 4q34 − 2q35 − 4q36 + 3q37 − 4q39 − 8q41 − 4q42 − 6q43 + 2q44

− 2q45 + 2q46 + 8q47 + 4q48 − 3q49 + 8q50 · · ·

The first few Hecke eigenvalues of the newforms f(z) ∈ S2(11) and h(z) ∈ S1(44, ε−44) are
listed in Table 2. We see that ap ≡ bp (mod 2) for all p (which one can also see directly from
the eta products above):

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
ap(f) −2 −1 1 −2 1 4 −2 0 −1 0 7 3 −8 −6 8
bp(h) 0 −1 −1 0 1 0 0 0 −1 0 −1 −1 0 0 2

Table 2. E = 11a1

5.4. An interpretation of Theorem 1.4. Under the BSD conjecture, Theorem 1.4 can be
interpreted as a mod 2 congruence between (suitably defined algebraic parts of) the special
values of L-functions of these two modular forms f and h (of different weights!):

• the 2-part of L(f, 1) or L′(f, 1) (depending on the sign) is related to s2(E/Q) by the BSD
formula;
• the 2-part of L(h, 1) is related to the 2-part of the ideal class group Cl(L) by the class
number formula, since L(h, s) = ζL(s)/ζ(s) is the quotient of the Dekind zeta function of L
by the Riemann zeta function.

We depict this as follows.

E

��

σ

��
f ≡≡

��

h (mod 2)

L(f, 1) or L′(f, 1)
OO

��

“ ≡≡ ” L(h, 1)
OO

��

(mod 2)

Sel2(E/Q) Cl(L)[2].
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We find this mod 2 congruence rather unusual: L(E, s) is of symplectic type with the sign
of the functional equation ±1 whereas the Artin L-function L(σ, s) is of orthogonal type with
the sign of the functional equation always +1. Congruences of this type is unique to p = 2. As
B. Mazur pointed out to us, this may suggest something much more general with intersections
mod 2 of 2-adic eigenvarieties of different (symplectic versus orthogonal) reductive groups.
Also, the point s = 1 is the central critical point for L(E, s) but there is no critical point for
L(σ, s) in the sense of Deligne, which makes even the formulation of the congruences more
subtle.

We hope to formulate this type of mod 2 congruence between L-values more precisely in
the future, which may shed light on Conjecture 1.9 by producing a direct mod 2 congruence
between Heegner points on E and the class group of L.
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