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The BSD conjecture
• E : y2 = x3 + Ax + B an elliptic curve over Q.
• Algebraic rank: the rank of the finitely generated abelian group E(Q)

ralg(E) := rank E(Q).

• Analytic rank: the order of vanishing of L(E , s) at the central point s = 1

ran(E) := ords=1 L(E , s).

Conjecture (Birch–Swinnerton-Dyer, 1960s)

(1) (Rank) ran(E)
?
= ralg(E),

(2) (Leading coefficient) For r = ran(E),
L(r)(E , 1)

r !
?
=

Ω(E)R(E)
∏

p cp(E) · |Ш(E)|
|E(Q)tor|2

where R(E) = det(〈Pi ,Pj〉NT)r×r is the regulator for the Néron–Tate height pairing
〈 , 〉NT : E(Q)× E(Q)→ R

and Ш(E) is the Tate–Shafarevich group.

Remark (Tate, The Arithmetic of Elliptic Curves, 1974)
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What is known about BSD?

The BSD conjecture is still widely open in general, but much progress has been made
in the rank 0 or 1 case.

Theorem (Gross–Zagier, Kolyvagin, 1980s)

ran(E) = 0⇒ ralg(E) = 0, ran(E) = 1⇒ ralg(E) = 1,

Remark. When r = ran(E) ∈ {0, 1}, many cases of the formula for L(r)(E , 1) are known.

The proof combines two inequalities:

(1) (Gross–Zagier formula)
ran(E) = 1⇒ ralg(E) ≥ 1.

(2) (Kolyvagin’s Euler system)

ran(E) ∈ {0, 1} ⇒ ralg(E) ≤ ran(E).

Both steps rely on Heegner points on modular curves.

Chao Li (Columbia) Beilinson–Bloch conjecture and arithmetic inner product formula July 8, 2021



The Beilinson–Bloch conjecture
• X : smooth projective variety over a number field K .
• CHm(X ): the Chow group of algebraic cycles of codimension m on X .
• CHm(X )0 ⊆ CHm(X ): the subgroup of geometrically cohomologically trivial cycles.
• Beilinson–Bloch height pairing

〈 , 〉BB : CHm(X )0 × CHdim X+1−m(X )0 → R.

• L(H2m−1(X ), s): the motivic L-function for H2m−1(XK̄ ,Q`).

Conjecture (Beilinson–Bloch, 1980s)

(1) (Rank) ords=m L(H2m−1(X ), s)
?
= rank CHm(X )0.

(2) (Leading coefficient) L(r)(H2m−1(X ),m)
?∼ det(〈Zi ,Z ′j 〉BB)r×r

Example (X/K = E/Q and m = 1)
BB recovers the BSD conjecture as

CH1(E)0 ' E(Q), L(H1(E), s) = L(E , s), 〈 , 〉BB = −〈 , 〉NT.

Remark. In general both sides are only conditionally defined!
(1) L(H2m−1(X ), s) is not known to be analytically continued to the central point s = m.
(2) CHm(X )0 is not known to be finitely generated.
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Testable BB conjecture: X = Shimura varieties

• Langlands–Kottwitz/Langlands–Rapoport: express the motivic L-functions of
Shimura varieties X = ShG, as a product of automorphic L-functions L(s, π) on G,

L(H2m−1(X ), s + m) =
∏
π

L(s + 1/2, π).

• Assume from now (the most interesting case):
(1) 2m − 1 = dim X (middle cohomology).
(2) π is tempered cuspidal.

• Analytic properties of L(s, π) can be established.
• CHm(X )0 is not known to be finitely generated, but we can test if it is nontrivial.

Unconditional prediction of BB conjecture, in the same spirit of Gross–Zagier:

Conjecture (Beilinson–Bloch for Shimura varieties)

ords=1/2 L(s, π) = 1 ?
=⇒ rank CHm(X )0

π ≥ 1.
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What is known about BB?

Conjecture (Beilinson–Bloch for Shimura varieties)

ords=1/2 L(s, π) = 1 ?
=⇒ rank CHm(X )0

π ≥ 1.

Remark. Conjecture was only known for:
(1) X = modular curves (Gross–Zagier)
(2) X = Shimura curves (S. Zhang, Kudla–Rapoport–Yang, Yuan–Zhang–Zhang, Liu).
(3) X = U(1, 1)× U(2, 1) Shimura threefolds and π = endoscopic (Xue).

Theorem A (L.-Liu, impressionist version)
Conjecture holds for U(2m−1, 1)-Shimura varieties and π satisfying local assumptions.

Remark (Kudla, Central derivatives of Eisenstein series and height pairings, 1997)
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Unitary Shimura varieties X
• E/F : CM extension of a totally real number field.
• V: totally definite incoherent AE/AF -hermitian space of rank n.
• Incoherent: V is not the base change of a global E/F -hermitian space, or

equivalently
∏

v ε(Vv ) = −1, where Vv := V⊗AF Fv .
• Any place w |∞ of F gives a nearby coherent E/F -hermitian space V such that

Vv ∼= Vv , v 6= w , but Vw has signature (n − 1, 1).
• G = U(V).
• K ⊆ G(A∞F ) ∼= U(V )(A∞F ): open compact subgroup.
• X : unitary Shimura variety of dimension n − 1 over E such that for any place w |∞

inducing ιw : E ↪→ C,

X (C) = U(V )(F )\[D× U(V )(A∞F )/K ],

where
D := {z ∈ Cn−1 : |z| < 1} ∼= U(n − 1, 1)

U(n − 1)× U(1)
.

• X is a Shimura variety of abelian type.
• Its étale cohomology and L-function are computed in the forthcoming work of

Kisin–Shin–Zhu, under the help of the endoscopic classification for unitary groups
(Mok, Kaletha–Minguez–Shin–White).
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Automorphic representations π

• W = E2m: the standard E/F -skew-hermitian space with matrix
( 0 1m
−1m 0

)
.

• U(W ): quasi-split unitary group of rank n = 2m.
• π: cuspidal automorphic representation of U(W )(AF ).

Assumptions.

(1) E/F is split at all 2-adic places and F 6= Q. If v -∞ is ramified in E , then v is
unramified over Q. Assume that E/Q is Galois or contains an imaginary quadratic
field (for simplicity).

(2) For v |∞, πv is the holomorphic discrete series with Harish-Chandra parameter
{ n−1

2 , n−3
2 , . . . , −n+3

2 , −n+1
2 }.

(3) For v -∞, πv is tempered.

(4) For v -∞ ramified in E , πv is spherical with respect to the stabilizer of O2m
Ev .

(5) For v -∞ inert in E , πv is unramified or almost unramified. If πv is almost
unramified, then v is unramified over Q.

Remark. πv is almost unramified: πv has a nonzero Iwahori-fixed vector and its Satake
parameter contains {qv , q−1

v } and 2m − 2 complex numbers of norm 1. Equivalently,
the theta lift of πv to the non-quasi-split unitary group of same rank is spherical with
respect to the stabilizer of an almost self-dual lattice.
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Main result A: BB conjecture

Let Sπ = {v inert : πv almost unramified}. Then under Assumptions, the global root
number for the (complete) standard L-function L(s, π) equals

ε(π) = (−1)|Sπ| · (−1)m[F :Q]

by epsilon dichotomy (Harris–Kudla–Sweet, Gan–Ichino). When ords=1/2 L(s, π) = 1:
• ε(π) = −1,
• V = Vπ: totally definite incoherent space of rank n = 2m such that for v -∞,

ε(Vv ) = −1 exactly for v ∈ Sπ.
• Associated unitary Shimura variety X of dimension n − 1 = 2m − 1 over E .
• CHm(X )0

π the localization of CHm(X )0
C at the maximal ideal mπ of the Hecke

algebra associated to π.

Theorem A (L.–Liu, 2020, 2021)
Let π be a cuspidal automorphic representation of U(W )(AF ) satisfying Assumptions.
Then the implication

ords=1/2 L(s, π) = 1 =⇒ rank CHm(X )0
π ≥ 1

holds when the level K ⊆ G(A∞F ) is sufficiently small.
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Example: Symmetric power L-function of elliptic curves

Theorem A (L.–Liu, 2020, 2021)
Let π be a cuspidal automorphic representation of U(W )(AF ) satisfying Assumptions.
Then the implication

ords=1/2 L(s, π) = 1 =⇒ rank CHm(X )0
π ≥ 1

holds when the level K ⊆ G(A∞F ) is sufficiently small.

Example
Let A/F be a modular elliptic curve without CM such that

(1) Sym2m−1 A is modular (Newton–Thorne, Clozel–Thorne, Kim–Shahidi, ...)

(2) A has bad reduction only at places v split in E
(e.g., A = LMFDB.64.1-a7 over F = Q(ζ7 + ζ−1

7 ) ⊆ E = Q(ζ7)).

Assume that E/F satisfies Assumptions. Then there exists π satisfying Assumptions
such that

L(s + 1/2, π) = L(Sym2m−1 AE , s + m).

As Sπ = ∅ and ε(π) = (−1)m[F :Q], Theorem A applies to π when m[F : Q] is odd.

Nontrivial cycles constructed via the method of arithmetic theta lifting (Kudla, Liu).
Next: a baby example of Heegner points.
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The Gross–Zagier formula
• Modular curve

X0(N) = Γ0(N)\H ∪ {cusps} = {(E1
cyclic−−−−−→

N-isogeny
E2)}

• For certain imaginary quadratic fields K = Q(
√
−d), get a Heegner divisor

Z (d) := {(E1 → E2) with endomorphisms by OK} ∈ CH1(X0(N)).

• The theory of complex multiplication: Z (d) is defined over K .
• E/Q elliptic curve of conductor N has a modular parametrization

ϕE : X0(N)→ E .

• Get a Heegner point

PK ∈ ϕE (Z (d)− deg Z (d) · ∞) ∈ E(K ).

Theorem (Gross–Zagier, 1980s)
Up to simpler nonzero factors,

L′(EK , 1) ∼ 〈PK ,PK 〉NT.

Remark
Choosing K suitably gives the implications ran(E) = 1⇒ ralg(E) ≥ 1.
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Generating series of Heegner points
Take Pd = trK/Q PK ∈ E(Q). It may depend on the choice of d , even when E(Q) ∼= Z.

Example (E = 37a1 = X +
0 (37) : y2 + y = x3 − x)

• E(Q) ∼= Z with a generator P = (0, 0).
• E corresponds to the modular form f ∈ S2(37),

f =
∑
n≥1

anqn = q−2q2−3q3+2q4−2q5+6q6−q7+6q9+4q10−5q11−6q12−2q13+· · ·

• Table of Heegner points Pd :
d 3 4 7 11 12 16 27 · · · 67 · · ·

Pd (0,−1) (0,−1) (0, 0) (0,−1) (0, 0) (1, 0) (−1,−1) · · · (6,−15) · · ·
cd − 1 − 1 1 − 1 1 2 3 · · · − 6 · · ·

where Pd = cd · P.

Miracle. The coefficients cd appear as the Fourier coefficients of φ ∈ S+
3/2(4 · 37),

φ =
∑
d≥1

cd qd = − q3 − q4 + q7 − q11 + q12 + 2q16 + 3q27 + · · · − 6q67 + · · · ,

which maps to f under the Shimura–Waldspurger–Kohnen correspondence

θ : S+
3/2(4N)→ S2(N), θ(φ) = f .
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Arithmetic theta lifting
• The generating series of Heegner points∑

d≥1

Pd · qd =
∑
d≥1

cd P · qd = φ · P ∈ S+
3/2(4 · 37)⊗ E(Q)C

is a modular form valued in E(Q)C.
• More generally, we may define a generating series of Heegner divisors on X0(N),

Z :=
∑
d≥0

Z (d)qd ∈ M3/2(4N)⊗ CH1(X0(N))C,

which may be viewed as an arithmetic theta series.
• Use Z as the kernel to define arithmetic theta lifting

Θ(φ) := (Z , φ)Pet ∈ CH1(X0(N))0
f ,C = E(Q)C.

• Now Θ(φ) does not depend on any particular choice of d or K .

Theorem (Gross–Kohnen–Zagier, 1980s)
Up to simpler nonzero factors,

L′(E , 1) ∼ 〈Θ(φ),Θ(φ)〉NT.
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Special cycles on X
• For any y ∈ V with (y , y) > 0. Its orthogonal complement Vy ⊆ V has rank n − 1.

The embedding U(Vy ) ↪→ U(V ) defines a Shimura subvariety of codimension 1

ShU(Vy ) → X = ShU(V ) .

• For any x ∈ V (A∞F ) with (x , x) ∈ F>0, there exists y ∈ V and g ∈ U(V )(A∞F ) such
that y = gx . Define the special divisor

Z (x)→ X

to be the g-translate of ShU(Vy ).
• For any x = (x1, . . . , xm) ∈ V (A∞F )m with T (x) = ((xi , xj )) ∈ Hermm(F )>0, define

the special cycle (of codimension m)

Z (x) = Z (x1) ∩ · · · ∩ Z (xm)→ X .

• More generally, for a Schwartz function ϕ ∈ S(V (A∞F )m)K and T ∈ Hermm(F )>0,
define the weighted special cycle

Zϕ(T ) =
∑

x∈K\V (A∞F )m

T (x)=T

ϕ(x)Z (x) ∈ CHm(X )C.

• With extra care, we can also define Zϕ(T ) ∈ CHm(X )C for any T ∈ Hermm(F )≥0.
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Arithmetic theta lifting
Define Kudla’s generating series of special cycles

Zϕ(τ) =
∑

T∈Hermm(E)≥0

Zϕ(T )qT .

Conjecture (Kudla’s modularity, 1990s)
The formal generating series Zϕ(τ) converges absolutely and defines a modular form
on U(W ) valued in CHm(X )C.

Remark

(1) The analogous modularity in Betti cohomology is known (Kudla–Millson, 1980s).

(2) Conjecture is known for m = 1. For general m, the modularity follows from the
absolute convergence (Liu, 2011).

(3) The analogous conjecture for orthogonal Shimura varieties over Q is known
(Bruinier–Raum, 2014).

(4) Conjecture is known when E = Q(
√
−d) for d = 1, 2, 3, 7, 11 (Xia, 2021).

Assuming Kudla’s modularity conjecture, for holomorphic φ ∈ π, define arithmetic theta
lifting

Θϕ(φ) = (Zϕ(τ), φ)Pet ∈ CHm(X )0
π.
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Main result B: Arithmetic inner product formula
Theorem B (L.–Liu, 2020, 2021)
Let π be a cuspidal automorphic representation of U(W )(AF ) satisfying Assumptions.
Assume ε(π) = −1. Assume Kudla’s modularity. Then for any holomorphic φ ∈ π and
ϕ ∈ S(V(A∞F )m), up to simpler factors depending on φ and ϕ,

L′(1/2, π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB.

Remark. The simpler factors can be further made explicit. For example, if
• π: unramified or almost unramified at all finite places,
• φ ∈ π: holomorphic newform such that (φ, φ)π = 1,
• ϕ: characteristic function of self-dual or almost self-dual lattices at all finite places.

Then L′(1/2, π)∏2m
i=1 L(i, ηi

E/F )
C[F :Q]

m

∏
v∈Sπ

qm−1
v (qv + 1)

(q2m−1
v + 1)(q2m

v − 1)
= (−1)m〈Θϕ(φ),Θϕ(φ)〉BB,

where Cm = 2−2mπm2 Γ(1)···Γ(m)
Γ(m+1)···Γ(2m)

.

Remark

• Riemann hypothesis predicts L′(1/2, π) ≥ 0.
• Beilinson’s Hodge index conjecture predicts (−1)m〈Θϕ(φ),Θϕ(φ)〉BB ≥ 0.

Compatible with our formula!
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Summary

BSD conjecture BB conjecture
Modular curves X0(N) Unitary Shimura varieties X

Heegner points Z (d) ∈ CH1(X0(N))C Special cycles Zϕ(T ) ∈ CHm(X )C

Z =
∑

d Z (d)qd Zϕ =
∑

T Zϕ(T )qT

Θ(φ) ∈ E(Q)C Θϕ(φ) ∈ CHm(X )0
π

Gross–Zagier formula Arithmetic inner product formula
L′(E , 1) ∼ 〈Θ(φ),Θ(φ)〉NT L′(1/2, π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB
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Proof strategy: doubling method
• Doubling method (Piatetski-Shapiro–Rallis, Yamana)

L(s + 1/2, π) ∼ (φ⊗ φ,Eis(s, g))U(W )2 ,

where Eis(s, g) is a Siegel Eisenstein series on U(W ⊕W ).
• By definition Θϕ(φ) = (Zϕ, φ)Pet gives

〈Θϕ(φ),Θϕ(φ)〉BB = (φ⊗ φ, 〈Zϕ,Zϕ〉BB)U(W )2 .

• To prove L′(1/2, π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB, it suffices to compare

Eis′(0, g)
?
= 〈Zϕ,Zϕ〉BB.

This can be viewed as an arithmetic Siegel–Weil formula.
• The Beilinson–Bloch height pairing is a sum of local indexes

〈Zϕ,Zϕ〉BB =
∑

v

〈Zϕ,Zϕ〉BB,v .

• The nonsingular Fourier coefficient decomposes as

Eis′T (0, g) =
∑

v

Eis′T ,v (0, g)
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Proof strategy: comparison
• Nonsingular terms: it suffices to compare

Eis′T ,v (0, g)
?
= 〈Zϕ,Zϕ〉BB,T ,v .

• m = 1: both sides can be computed explicitly.
• Explicit computation infeasible for general m.
• v -∞ (source of Assumptions)

(1) relate 〈Zϕ,Zϕ〉BB,T ,v to arithmetic intersection numbers (on regular integral
models of PEL type) : sophisticated use of Hecke operators and proof of
vanishing of certain mπ-localized `-adic cohomology of integral models.

(2) relate arithmetic intersection numbers to Eis′T ,v (0, g): proof of
Kudla–Rapoport conjecture (L.–Zhang) and our more recent extension to
ramified places for exotic smooth integral models.

• v | ∞:
(1) archimedean arithmetic Siegel–Weil formula (Liu, Garcia–Sankaran).
(2) avoidance of holomorphic projections.

To finish:
• Kill singular terms on both sides: Prove the existence of special ϕ ∈ S(V (A∞F )m)

with regular support at two split places with nonvanishing local zeta integrals.
• Theorem B for special ϕ: comparison of nonsingular terms.
• Theorem B for arbitrary ϕ: multiplicity one of doubling method (tempered case).
• Theorem A: same computation without Kudla’s modularity (proof by contradiction).
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Remarks on Assumptions

• When v -∞, the local index 〈 , 〉BB,v is defined as a `-adic linking number. It is
defined on a certain subspace CHm(X )〈`〉 ⊆ CHm(X )0 (conjecturally equal) and its
independence on ` is not known in general.

• Find a Hecke operator t 6∈ mπ such that t∗Z ∈ CHm(X )〈`〉, so BB height is defined.
• Find another Hecke operator s 6∈ mπ, so BB height of s∗t∗Z can be computed in

terms of the arithmetic intersection number of a nice extension Z on X . Here X is
a regular integral model of a related unitary Shimura variety of PEL type. This step
requires to prove certain vanishing of mπ-localized `-adic cohomology of X .

• Kudla–Rapoport conjecture: arithmetic intersection number equals Eis′T ,v (0, g).
• The `-independence of 〈Zϕ,Zϕ〉BB,T ,v then follows.
• Construction of Hecke operators and the proof of Kudla–Rapoport conjecture

requires Assumptions.
• F 6= Q is needed to prove vanishing of mπ-localized cohomology of integral

models with Drinfeld level structures at split places (with input from Mantovan,
Caraiani–Scholze).
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