Mathematics W4045. Algebraic Curves, Spring 2011

Lecture 1 (Wednesday, January 19)

1.

Warmup: real algebraic curves in R?. Examples: (1) y — 2% = 0, (2a)
2?2 +9y?—1=0,(2b) 22 —9y? —1=0, (2c) 2> — 9> =0, (2d) 2% +y*> =0,
(2e) 22+ 9> +1=0.

Complex algebraic curves in C? (i.e. affine plane curves. Examples: (1)
w—22=0,(2a) 22+w?—1=0, (2b) 22 —w? =1 =0, (2¢) 22 —w? =0,
(2d) 22 +w? =0, (2e) 22 +w? +1 = 0. (2a), (2b), (2e) are equivalent;
(2¢), (2d) are equivalent. Bijections between C and (1), between C — {0}
and (2b).

Irreducibility, irreducible components. Check examples in 2. above.

Smooth points, singular points, smooth (nonsingular) curves. Check ex-
amples in 2. above.

Implicit Function Theorem.

Lecture 2 (Monday, January 24)

1.

Definition of topological spaces. Examples: C with the standard topology,
C with the Zariski topology.

. Defintion of a Hausdorff topological space. Examples: the standard topol-

ogy on C is Hausdorff; the Zarisky topology on C is not.

Definition of a metric space. Examples: R™, C". A metric space is a
Hausdorff topological space.

Subspace of a topological space or a metric space. Example: a complex
algebraic curve in C? (i.e. affine plane curve) with the subspace topology
is a Hausdorff topological space.

Continuity, homeomorphism. Examples: (1) The affine plane curve w —
2% = 0 is homeomorphic to C, (2) The affine plane curve 22 —w? — 1 =10
(or 22 +w? —1=0or 22 + w? + 1 = 0) is homeomorphic to C — {0}.

Open basis, second countability. Examples: R™, C".
An affine plane curve is a second countable Hausdorff topological space.

Definition of a complex chart. Examples: w — 22 =0, 22 —w? — 1 = 0.



Lecture 3 (Wednesday, January 26)

1.

A complex chart near a smooth point of a affine plane curve. Compatibility
of two complex charts.

Definition of a complex atlas. Equivalence of two complex atlases. Defi-
nition of a complex structure. Definition of a Riemann surface.

State: an irreducible affine plane curve is connected. Prove: an irreducible
smooth affine plane curve is a Riemann surface.

Compactness. Affine plane curves are not compact. First example of a
compact Riemann surface: P!; quotient topology.

Lecture 4 (Monday, January 31)

1.

2.

Second example of a compact Riemann surface: complex tori C/L.

Definition of an n-dimensional complex chart, compatibility of two n-
dimensional complex charts. Definition of an n-dimensional complex atlas,
equivalence of two n-dimensional complex atlases.

Definition of an n-dimensional complex manifold. Example: P".

Lecture 5 (Wednesday, February 2)

1.

Definition of a projective plane curve, i.e., a complex algebraic curves in
P2. A projective plane curve is a compact Hausdorff topological space.

. Irreducibility, irreducible components. Examples: 22 4+ y? + 22 = 0, 2% +

y?> = 0. A line is a projective plane curve of the form azx + by + cz = 0,
where (a,b,c) € C3 —{(0,0,0)}.

Smooth points and singular points of a projective plane curve. Euler’s
formula. Example: singular points of 22y + 2223 4 4223 = 0.

. The three affine plane curves X; = X NU; (i = 0,1,2) associated to

a projective plane curve X. [1,a,b]/[a,1,b]/[a,b,1] is a singular point
of X iff (a,b) is a singular point of X(/X;/Xs. Revisit the example
2293 + 2223 1 4223 = 0.

State: any nonsingular projective plane curve is irreducible. Prove: any
nonsingular projective plane curve is a compact Riemann surface.

Lecture 6 (Monday, February 7)

1.

More preliminaries on topology: let X, Y be topological spaces.

(1) f: X =Y is continuous, AC X, BCY, f(A)C B
= f|la : A — B is continuous.



(2) X is compact, A is a closed subset of X = A is compact.
(3) f: X — Y is continuous, X is compact = f(X) is compact.

(4) X is Hausdorff, A is a compact subset of X, p € X \ A = There
exists open set U,V in X such that pe U, ACV,UNV = 0.

(5) X is Hausdorff, A is a compact subset of X = A is a closed set in
X.

(6) f: X — Y is a bijective continuous map, X is compact, ¥ is Haus-
dorff = f is a homeomorphism.

2. Definitions of holomorphic functions on an open subset W of a Riemann
surface X. The set Ox (W) of holomorphic functions on W is a C-algebra.
Examples:

(1) X = C: agrees with the old definition.

(2) If ¢ : U — V a complex chart on X then f : U — C is holomophic
& fog™!:V — C is holomorphic.

(3) Let g,h € Clz,w] be homogenenous of the same degree d. Then {
is a holomorphic function on the open subset W = {[z : w] € P! |
h(z,w) # 0} of PL.

(4) Let X = {(z,w) € C? | f(z,w) = 0} be a smooth irreducible affine
plane curve, so that it is a Riemann surface. Let g, h € C[z, w|, where
h is not divisble by f. Then { is a holomoprhic function on the open
subset W = {(z,w) € X | h(z,w) # 0} of X. In particular, g is a
holomorphic function on X.

Lecture 7 (Wednesday, February 9)

1. Singularities of a function f defined and holomorphic on a punctured
neighborhood of a point p in a Riemann surface X. Meromorphic func-
tions. The set M x (W) of meromorphic functions on an open subset W
in X is a field.

2. Definition of ord,(f) for a meromorphic function f at p € X. f is holo-
morphic or has a removable singularity at p iff ord,(f) > 0; f has a zero
(resp. pole) at p iff ord,(f) > 0 (resp. ord,(f) < 0).

3. Examples of meromorphic functions:

(1) X = C: usual definition.

(2) ¢ : U — V a complex chart on X, f is a meromorphic function on U
iff fo ¢! is a meromorphic function on V. Mx (U) = Mc(V).

(3) g,h € C[z,w] homogeneous of the same degree, h # 0. Then Z =
{[z : w] € P! | h(z,w) = 0} is a finite subset of P! and #Z < deg h.
W = P! — Z is open in the standard and Zariski topology. (Aside:
let X be a compact Riemann surface. A C X is a closed set in



the Zariski topology on X iff A is empty or A = X or A is a finite
nonempty set.)

<
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is holomorphic on W and meromorphic on P*.

X = {(2,w) € C*| f(z,w) = 0} irreducible nonsingular affine plane
curve. g,h € Clz,w], h ¢ (f). We will see later that

Z={(z:w] € P | f(zw) = h(z,w) = 0}
is a finite subset of X. W = X — Z is open in X.

g(z,w)

¢ X
- CUoo0, (z,w)+ h(z, )

>

is holomorphic on W and meromorphic on X.

X ={[x:y:z €P?| F(r,y,z) = 0} nonsingular projective plane
curve. G, H € Clz,y, z] homogeneous of the same degree, H ¢ (F).
We will see later that

Z={[z:y:z] €P?| F(z,y,2) = H(z,y,2) = 0}

is a finite subset of X and #7Z < degFdegH. W = X — Z is open
in the standard and Zariski topology on X.

G . G(z,y,2)
ﬁ.X%(CUoo, [x'y'Z]HH(x,y,z)

is holomorphic on W and meromorphic on X.

Lecture 8 (Monday, February 14)

1. Generalization of the following theorems from C to a general Riemann
surface X: (1) The zeros and poles of a nonzero meromorphic functions
form a discrete set. (2) The identity theorem. (3) The maximum modulus
theorem for holomorphic functions.

2. If X is a compact Riemann surface then (1) any nonzero meromorphic
function on X has a finite number of zeros of poles, and (3) any holomophic
function on X is constant. Any bounded entire function on C can be
extended to a holomorphic function on P!, so it must be constant.

3. Any meromorphic function on P! is of the form ¥, where g,h € Clz, w]
are homogeneous polynomials of the same degree.



Lecture 9 (Wednesday, February 16)

1. The theta function 6(z) = > >7 emi(n*7+2n2) ig holomorphic on C. It
satisfies (2 +1) = 0(z) and 0(z+7) = e~ ™("+22)9(2). It has simple zeros
at H'TT—I—m—i—nT, m,n € 7.

2. For any = € C, the translated theta function 0(*) = 0(z — L= — 2) is
holomorophic on C. Tt satisfies 8@ (z +1) = 0 (2) and (2 + 7) =
—e~2m(2=2)(2). Tt has simple zeros at = + m + n7, m,n € Z.

Lecture 10 (Monday, February 21)

1. Given complex numbers z1, ...,z and nonzero integers ey, .. ., e satisfy-
k k
ing (i) 2 —2; ¢ L=Z@Zrifi #j, (i) Y _e; =0, and (iii) Y e;x; € Z,
i=1 i=1

there exists a meromorphic function f on C/L such that

[ e, ifp=a;+Lforsomeiec{l,... ,k},
ordy f = { 0, otherwise.

Moreover, such f is unique up to multiplication by a nonzero constant
c € C*. Indeed,

k
fom(z) = CHH(“)(Z)C"
i=1

where 7 : C — C/L is the natrual projection.

2. We will see later that any nonzero meromorphic function on C/L is of the
form described above. This implies that if f is any meromorphic function
on C/L then

> ordyf=0€Z, > (ordyf)p=LeC/L.

peC/L peC/L

3. Definition of holomorphic maps between complex manifolds. Example:
F: X — C is a holomorphic map iff F' is a holomorphic function on X.

4. Let {¢o : Uy — Vo } be an n-dimensional complex atlas on X. Let {¢}; :
Uj — V3} be an m-dimensional complx atlas on Y. Amap F': X — Y is
holomorphic if and only if

PhoFod,': da(F 1 (Us)NU,) CC" — C™

is holomorphic whever F'(U,) N U} is nonempty. Example: g,h € C[z, w]
homogeneous polynomial of the same degree, with no common factors, not
both identically zero. Then F : P* — P! [z : w] = [g(z,w) : h(z,w)], is a
well-defined holomorphic map.



5. Properties fo holomorphic maps:

(a) If F : X — Y is a holomorphic maps between Riemann surfaces,
then F': X — Y is a continuous map between topological spaces.

b)) fF:X —=Y,G:Y — Z are holomorphic maps between Riemann
surfaces then G o F' : X — Z is a holomorphic map.

(¢) If F: X — Y is a holomorphic map, f is a holomorphic function
on an open subset W of Y, then f o F is a holomorphic function on
F=Y(W).

(d) Let F : X — Y is a holomorphic map. Let f be a meromorphic
function on an open subset W of Y, such that F(X) is not contained

in the set of poles of f. Then f o F' is a meromorphic function on
F=Y(w).

From (c), if F: X — Y is a holomorphic map then for every open subset
W C Y, there is a C-algebra homomorphism

F*: 0y (W) = Ox(FY(W)), fw foF.

From (d), if F: X — Y is a nonconstant holomorphic map then for every
open subset W C Y, there is a C-algebra homomorphism

F*: My (W) = Mx(F7*(W)), fw foF.

6. Isomorphism between Riemann surfaces. Automorphism of a Riemann

surface. Example: given A = ( Ccl Z >, a,b,c,d € C, ad — bc # 0, the

map Fjy : P! — P! [z : w] = [az + bw : ¢z + dw] is an automorphism of
Pl Fyn =F "

Lecture 11 (Wednesday, February 23)

1. Theorems on holomorphic maps between Riemann surfaces: (1) Discrete
Preimage Theorem, (2) Identity Theorem, (3) Open Mapping Theorem.
If F: X — Y is an injective holomorphic map then F~1: F(X) — X is
a holomorphic map.

2. If F: X — Y is a nonconstant holomorphic map from a compact Riemann
surface X to a Riemann surface Y, then F is sujective, Y is compact, and
f~Y(y) is a nonempty finite set for any y € Y. Example: F : P! — X =
{[z,y,2) €P? | 2% +y? — 22 =0}, [20 : 21] = [22021 : 23 — 22 : 22 + 23], is
an isomorphism.

3. Correspondence between nonconstant meromorphic functions and noncon-
stant holomorphic maps to P!.



Lecture 12 (Monday, February 28)

1.

Correspondence between nonconstant meromorphic functions and noncon-
stant holomorphic maps to P* (continued). Any nonconstant holomorphic
map F : P! — P! is of the form [z : w] — [g(z,w) : h(z,w)], where
g,h € Clz,w] are homogeneous of the same degree d > 0, with no com-
mon factors. Any automorphism of P! is of the form described in item 6
of Lecture 10.

Let FF : X — Y be a nonconstant holomorphic map between Riemann
surfaces. Definition of mult,F', the multiplicity of F' at a point p € X.
Ramification points and branch points. The Local Normal Form.

Let X = {(x,y) € C? | f(z,y) = 0} be an irreducible, smooth affine plane
curve, and define 7 : X — C, (x,y) — 2. Then 7 is a holomorphic map.
We assume that f(z,y) is not of the form ax+b, so that 7 is not a constant
map. Then (a,b) € X is a ramification point of = iff %(a, b) = 0.

Lecture 13 (Wednesday, March 2)

1.

Let X = {[z:y:2] € P?| F(z,y,2) = 0} be a smooth projective plane
curve. Supposethat [0:1:0] ¢ X. Definer: X — P! [z :y: 2] [2: 2]
Then 7 is a nonconstant holomorphic map. [a: b: ¢] € X is a ramification
point of 7 iff %—’Z(a7 b,c) =0.

Example: X = {(z,y) | ¥*> = h(x)}, where h(z) € C[z] is a polynomial of

degree d > 0, with distinct roots aq, ..., aq. Then the ramification points
of m: X = C, (z,y) — x, are (a1,0),...,(aq,0) € X. The branch points
of mare ay,...,ap € C. For k=1,...,d, mult, om=2.

Let F be the nonconstant holomorphic map from X to P! associated to a
nonconstant meromorphic function on X. Then for any p € X,

ord, f, ord, f > 0,
mult, F' = ¢ ord,(f — f(p)), ordyf =0,
—ord, f, ord, f < 0.

. The degree of a holomorphic map between compact Riemann surfaces. If

f is a nonconstant meromorphic function on a compact Riemann surface

X then ) cord,f =0.

Lecture 14 (Monday, March 7)

1.
2.

Proof of Proposition 4.8 on page 47 of Miranda’s book.

Definition of C*° 2-manifold. Orientation. Any Riemann surface is an
oriented C'*° 2-manifold.

The genus and Euler characteristic of compact Riemann surfaces.



Lecture 15 (Monday, March 21)

1.
2.

Connected sum of compact orientable surfaces.

Outline of the proof of the Hurwitz’s formula.

Lecture 16 (Wednesday, March 23)

1.

Holomorphic/meromophic 1-forms on an open set V of C. Example: the
differential df of a holomorphic/meromorphic function f on V.

. The order ord,,(w) of a nonzero meromorphic 1-form w on a connected

open set V at zg € V. Zeros and poles of w.

The pullback T*w of a meromorphic 1-form w on an open set V5 of C
under a holomorphic map T : V; — V5, where V;j is an open set of C
and the image of T' is not contained in the set of poles of w. Example:
z =T(w) = w™ (m is positive integer), T*dz = mw™ tdw. If T : V; — Vs
and S : Vo — V3 are nonconstant holomorphic maps between open sets in
C, and w is a meromorphic 1-form on V3, then (S oT)*w = T*S*w.

. Let T: Vi — V5 and w be as in 3. above. For any zo € V;, we have

ord, (T"w) = ordyp(z,)(w) - mult,, (T') + mult,, (T") — 1.
In particular, ord., (T"*w) = ordy(.,)(w) if T is a biholomorphic map.

Holomorphic/meromorphic 1-form w on a Riemann surface X. Example:
X isanopensetin C. If A= {¢, : Uy = V4 | @ € T} is a complex atlas on
X then a holomorphic/meromorphic 1-form w is equivalent to a collection
{wa | & € I}, where w,, is a holomorphic/meromorphic 1-form on V,,, such
that if U, NUg # 0, then w, = (¢p 0 ¢51)*ws on ¢o(Us NU) C V.

The order ord,(w) of a nonzero meromorphic 1-form w on a Riemann
surface X at p € X. Zeros and poles of w. If f is a nonzero meromorphic
function on X, then fw is a nonzero meromorphic 1-form on X, and
ord,(fw) = ord,(f) + ord,(w) for any p € X.

References for this lecture are the following sections in Chapter IV of Mi-
randa’s book: Holomorphic 1-Forms, Meromorphic 1-Forms, Multiplication of
1-Forms by Functions, Differential of Functions, Pulling Back Differential Forms.

Lecture 17 (Monday, March 28)

1.

The differential df of a meromorphic function f on a Riemann surface X.
Example 1: X =P, f([z:w]) = 2

w?

[0, e Uy ={[z:w] € P! | w#0},
ord, (df) _{ O, i: [11: 0 .



2. Example 2: X = C/L, dz is a holomorphic 1-form on C which descends to
a holomorphic 1-form wy on C/L. wy has no zeros. (Reference: Exercise
B on page 111 of Miranda’s book.)

3. If w is a nonzero meromorphic 1-form on a Riemann surface X, then any
meromorphic 1-form on X is of the form hw, where h is a meromorphic
function on X. If wq,ws are two nonzero meromoprhic 1-forms on a com-
pact Riemann surface X, then

Z ordy(w1) = Z ord,(w2).

peX peX

e Example 1 (continued): Any meromorphic 1-form on P! is of the
9(z w)

h(z,w)

same degree, and f is defined as in 1. above. If w is nonzero than

form w = df, where g,h € C[z,w] are homogeneuous of the

Z ordy(w) = —2. In particular, there is no nonzero holomorphic
peP!
1-form on P!.

e Example 2 (continued): Any meromorphic 1-form on C/L is of the
form w = hwg, where h is a meromoprhic function on C/L. If w is

nonzero then ord,(w) = ord,(h) for all p € X, and Z ord,(w) = 0.
peC/L

w is holomorphic iff A is holomorphic iff w = cwqy for some constant

ceC.

4. Fact: There is a nonconstant meromorphic function on any compact Rie-
mann surface. Corollary: There is a nonzero meromorphic 1-form on any
compact Riemann surface.

5. Let X = {(u,v) € C?| f(u,v) = 0} be an irreducible smooth affine plane
curve, so that it is a Riemann surface. u,v,p(u,v) € Clu,v] restrict to
holomorphic functions on X. So du, dv, p(u, v)du, p(u,v)dv are holomor-
phic 1-forms on X. If ¢(u,v) € Clu,v] is not in the ideal (f) in Clu,v]
generated by f(u,v), then p(u,v)du’ p(u,v)

q(u,v) " q(u,v)
on X. (Reference: Exercise C on page 111 of Miranda’s book.)

dv are meromorphic 1-forms

6. Geometry of the hyperelliptic Riemann surface X defined in Assignment 6
(3). The mermorphic 1-form y~'dz on X is indeed a holomorphic 1-form
on X;. (Reference: Exercise G on page 112 of Miranda’s book.)

Lecture 18 (Wednesday, March 30)

1. Geometry of genus 0 hyperelliptic Riemann surfaces y?> = z and 3% =
2
e — 1.



2. We use the notation in Assignment 6 (3). We have seen that y~dz is a
holomorphic 1-form on X;. If p € X; is not a ramification point of m,
then ord,(dz) = 0 and ord,(y~!) = 0, so ord,(y~'dz) = 0. If p € X4
is a ramification point of 7, then ord,(dz) = 1 and ord,(y~!) = —1, so
ord,(y~'dz) = 0. Therefore y~'dz has no zeros in X;. (¢~ 1)*(y~!dz) =
—29~tw~1dz. By similar argument, w~!dz is a holomorphic 1-form on X»
with nonzeros on Xs.

e If g = 0 then y~'dz extends to a meromorphic 1-form on X which
has no zeros and has poles at the points in X \ X; =7~ 1([1: 0]).

e If g = 1 then y~!dx extends to a holomorphic 1-form on X which
has no zeros. Any holomorphic 1-form on X is a constant multiple
of this holomorphic 1-form.

e Suppose that g > 2. For any p(z) € C[z], p(x)y~dx is a holomorphic
1-form on X;.

(671" (v ) = =2 p(5u s

which is holomorphic on X5 if degp > g — 1. Therefore,

-1

y Yo xy e, .. 29y e

are holomorphic 1-forms on X. Indeed (to be proved later), they
form a basis of Q% (X), the space of holomorphic 1-forms on X:

g—1
Oy (X) = P Ca'y'da.
i=0
3. Fact (to be proved later): If X be a compact Riemann surface of genus g

then dime Q4 (X) = g.

4. Let F: X — Y be a holomorphic map between Riemannn surfaces, let w
be a meromorphic 1-form on Y. Definition of the pull back F*w of w (when
F'is not a constant map to a pole of w). Composition: (GoF)*w = F*G*w.

5. Lemma: Let F' : X — Y be a nonconstant holomorphic map, and let w
be a nonzero meromorphic 1-form on Y. Then for any p € X.

ord, (F*w) = mult, (F)ord p(,) (w) + mult, (F) — 1.

6. Theorem: Let w be a nonzero meromorphic 1-form on a compact Riemann

surface X. Then
Z ord,(w) = 2¢g(X) — 2.
peX

10



7. Definition of a divisor D on a Riemann surface X. Divisors on X form
an additive group Div(X). Examples: (i) principal divisors, (ii) canonical
divisors, (iii) on P!,

z—1)

(=D
w

)=1[0:1]+[1:1]—2[1:0], div(d(g)) = —2[1:0].

References for this lecture are the following sections in Miranda’s book:
Chapter III Section 1, “Hyperelliptic Riemann Surfaces”; Chapter IV Section
2, “Pulling Back Differential Forms”; Chapter V Section 1, “The Definition
of a Divisor”, “The Divisor of a Meromorphic Function: Principal Divisors”,
“The Divisor of a Meromorphic 1-Form: Canonical Divisors”, “The Degree of a
Canonical Divisor on a Compact Riemann Surface”.

Lecture 19 (Monday, April 4)

1. Let X be a Riemann surface. The set of principal divisors on X, PDiv(X),
is a subgroup of Div(X). The set of canonincal divisors on X, KDiv(X),
is a coset in Div(X)/PDiv(X). We say two divisors Dy, Dy € Div(X) are
linearly equivalent, written Dy ~ Dy, if D; — Dy € PDiv(X).

2. If X is a compact Riemann surface then there is a surjective group ho-
momorphism deg : Div(X) — Z. Let Divg(X) = deg™*(d) be the set of
degree d divisors on X. In particular, Divo(X) = Ker(deg) is a subgroup of
Div(X). Then PDiv(X) C Divo(X) and KDiv(X) C Divy,_o(X), where
g is the genus of X.

3. State the Fact (proved in Chapter VIII of Miranda’s book): If X is a
compact Riemann surface of genus g, then there is a group isomorphism
Divo(X)/PDiv(X) = C9/A, where A is a rank 2g lattice in C9. CI9/A is
homeomorphic to (S1)29. Prove the Fact when X = P! (the projective
line) or X = C/L (a compact torus).

4. Let F: X — Y be a nonconstant holomorphic map between Riemann
surfaces. Definitions of the inverse image divisor F*(¢q) € Div(X), where
g € Y, and the pullback divisor F*(D) € Div(X), where D € Div(Y').

References for this lecture are the following sections in Miranda’s book:
Chapter V Section 1, “The Definition of a Divisor”, “The Divisor of a Mero-
morphic Function: Principal Divisors”, “The Degree of a Divisor on a Compact
Riemann Surface”, “The Divisor of a Meromorphic 1-Form: Canonical Divi-
sors”, “The Inverse Image Divisor of a Holomorphic Map”; Chapter V Section
2, “The Definition of Linear Equivalence”, “Principal Divisors on a Complex
Torus”; Chapter II Section 4, “Meromorphic Functions on a Complex Torus,
Yet Again”

11



Lecture 20 (Wednesday, April 6)

1. Let FF: X — Y be a nonconstant holomorphic map between Riemann
surfaces. Definitions of the ramification divisor Rp € Div(X) and the
branch divisor By € Div(Y') of F.

2. Lemma: Let FF : X — Y be a nonconstant holomorphic map between
Riemann surfaces.
(1) F*:Div(X) — Div(Y) is a group holomorphism.

(2) If f is a nonzero meromorphic function on Y, then
div(F*f) = F*div(f) € PDiv(X).
(3) If w is a nonzero meromorphic 1-form on Y | then
div(F*w) = F*div(w) + Rp € KDiv(X).
(4) If X, Y are compact, then deg(F*D) = deg F deg D.
3. Remarks on the above Lemma:

e By (2), F*(PDiv(Y)) C PDiv(X).
e When X, Y are compact, taking the degree of the equality in (3), we
recover the Hurwitz’s formula

29(X) -2 =deg F(29(Y) = 2) + > _ (mult,(F) — 1.
reX

e By (4), when X,Y are compact, F*(Divy(Y')) C Divgdeg r(X).

4. The divisor of zeros, divo(f), and the divisor of poles, dive(f), of a
nonzero meromorphic function f on a Riemann surface. div(f) = divo(f)—

diveo (f).

5. The partial ordering on divisor: given two divisors D;, Dy on a Riemann
surface X, D1 > Dy < Di(p) > Dao(p) for all p € X. We say a divisor is
effective if D > 0. Examples: (1) Given a nonconstant holomorphic map
F : X — Y between Riemann surfaces, Rp > 0, Bp > 0, and F*(¢q) > 0
for any ¢ € Y. (2) Given a nonzero meromoprhic function f on a Riemann
surfaces, divg(f) > 0, divee(f) > 0.

Let D be a divisor on a Riemann surface X. Then D = Dy — Dy, where

Di= Y D)-p>0, Do= > (=D(p)-p=0.

peX,D(p)>0 peX,D(p)<0

6. The intersection divisor div(G) of a homogeneous polynomial G € C|x, y, 2]
on a smooth projective plane curve X = {[z : y : 2] € P? | F(z,y,2) =
0}, where G is not in the (prime) ideal generated by F. Lemma: (a)
diV(GlGQ) = le(Gl) + diV(Gg), (b) degG1 = degG2 = le(Gl) —

div(Ge) = div(&L) = div(Gy) ~ div(Ga).

2

12



References for this lecture are the following sections in Miranda’s book:
Chapter V Section 1, “The Divisor of a Meromorphic Function: Principal Divi-
sors”, “The Inverse Image Divisor of a Holomorphic Map”, “The Ramification
and Branch Divisor of a Holomorphic Map”, “Intersection Divisors on a Smooth
Projecitve Curves”, “The Partial Ordering on Divisors”.

Lecture 21 (Monday, April 11)
In this lecture, X = {[z : y : 2] € P? | F(x,y,2) = 0} is a smooth projective
plane curve, where F' € C[z,y, z] is a homogeneous polynomial of degree d > 0.

1. Assume that [0:1:0] ¢ X. Define
7: X 5P [ziy:zezz
By item 1 of Lecture 13,

e 7 is a nonconstant holomorphic map,

e [a:b:c| € X is a ramification point of = iff %—g(a, b,c) = 0.
Proposition: (1) For any [a : ¢] € P1, 7*([a : ¢]) = div(cz — az) € Div(X).
(2) R, = div(%—g) € Div(X). (3) deg(w) = deg(div(cx — az)) = d.

2. Bezout’s Theorem: Let G € Clz,y, 2] be a homogeneous polynomial of
degree e which is not in the ideal generated by F. Then deg(divG) = de.

—1)(d—-2
3. Pliicker’s formula: g(X) = %

References for this lecture are the following sections in Miranda’s book: Chapter
V Section 2, “The Degree of a Smooth Projective Curve”, “Bezout’s Theorem
for Smooth Projective Plane Curves”, “Pliicker’s Formula”.

Lecture 22 (Wednesday, April 13)

1. Let X be a Riemann surface. Let 0 be the zero function on X, and let dO be
the zero holomorphic 1-form on X. We define ord,(0) = ord,(d0) = 400
for any p € X.

2. Let X be a Riemann surface. For any open set U in X, let Mx(U)
(resp. M?(U)) denote the space of meromorphic functions (resp. 1-

forms) on U. Then Mx(U) and MQ)(U) are complex vector spaces.
Given D € Div(X), define

L(D) = {feMx(X d
= {feMx(X)|ordy(f) > —D(p) for all p € X},

LOD) = {weMP(X)|f=0o0rdiv(w) > -D}
= {weMP(X)]|ord,(w)>—D(p) for all p € X}.

L(D) (resp. LW (D)) is called the space of meromorphic functions (resp.
1-forms) with poles bounded by D.

13



3. Lemma: Let X be a Riemannn surface.

(1) L(D) is a complex linear subspace of Mx (X); L (D) is a complex
linear subspace of MS)(X).

(2) L(0) = Ox(X), LV(0) = Qx (X).

(3) If Dy < Dy then L(D;) C L(D2) and LM (Dy) ¢ LM (Dy).

(4) If Dy ~ Dy then there are linear isomorphisms L(D;) & L(D3) and
LO(Dy) 2= LY(Dy).

(5) Let K = div(w) be a canoncial divisor on X. Then there is a linear
isomorphism L(D + K) = LW (D).

Outline of proofs of (4) and (5):

(4) If h is a nonzero meromorphic function on X then there is a linear
isomorphism pp, : Mx(X) = Mx(X), f+— fh.
un(L(div(h) + D)) = L(D).

(5) If w is a nonzero meromorphic 1-form on X then there is a linear
isomoprhism g, : Mx(X) — /\/lg;)(X), [ fw.
pn(L(div(w) + D)) = LM(D).

4. Lemma: Let X be a compact Riemann surface. Then
(a) L(0) 2 C. (b) degD < 0= L(D) = {0}.

5. Let D be a divisor on a Riemann surface X. The complete linear system
of D, |D|, is the set of all effective divisors £ > 0 on X which are linearly
equivalent to X:

ID| = {E € Div(X) | E ~ D and E > 0}.

There is a surjective map m : L(D) — {0} — |D| given by f — div(f)+ D.
w(f1) = w(f2) iff % is a meromorphic functions on X with no zero and
pole.

We now assume that X is compact. Then mi(f1) = ma(fe) iff % is a

nonzero constant, and we have a bijection
P(L(D)) := (L(D) —{0})/C* — |D|.

6. Let D € Div(P!). If deg D < 0 then L(D) = {0}. We want to compute
L(D) when d = deg D > 0. We have D ~ dpg, where pg = [1 : 0].

L(dpy) = {p(:dw) | p(z,w) € C[z,w]is either the zero polynomial
or a homogeneous polynomial of degree d}
~ C4tL
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References for this lecture are the following sections in Miranda’s book:
Chapter V Section 3, “The Definition of the Space L(D)”, “Isomorphisms be-
tween L(D)’s under Linear Equivalence”, “The Definition of the Space L(1)(D)”,
“The Isomorphism between L") (D) and L(D+ K)”, “Computation of L(D) for
the Riemann Sphere”.

Lecture 23 (Monday, April 18)

1.

Let D = Zle eila; : b;] be a divisor of degree d > 0 on P!, where [a; :
bi], ,lax : bi] are distinct points in P!, ey, ..., e; are nonzero integers,
and e; + -+ e = 0}. Then

p(z, w)
k v
[Li=1 (biz — aw)
polynomial or a homogeneous polynomial of degree d}

L(D) = { | p(z,w) € C[z,w] is the either zero

~ Cd+1

Let X be a Riemann surface, D € Div(X), p € X. Then the codimension
of L(D —p) in L(D) is either 0 or 1.

Let X be a compact Riemann surface. Then L(D) is finite dimensional for
any D € Div(X). Indeed, if we write D = P — N, where P, N > 0, then
(D) < deg P + 1, where £(D) = dim¢ L(D).

Let X = C/L be a complex torus. Define the Abel-Jacobi map A :
Div(X) - X =C/L by A(D) =3_ cx D(p)p (sum in the additive group
C/L). Then Dy ~ D, iff deg D1 = deg Dy and A(D;) = A(D2). Lemma:
If D € Div(X) and deg D > 0, then D is linearly equivalent to a positive
divisior (i.e. a nonzero effective divisor). Moreover, if deg D = 1 then
D ~ q for a unique point ¢ € X; if deg D > 1 then for any = € X there
exists a positive divisor £ > 0 on X such that £ ~ D and E(x) = 0.

Let D € Div(C/L). Then (a) degD < 0 = 4(D) = 0, (b) degD =0
and D ~ 0 = ¢(D) =1, (¢)degD =0and D # 0 = ¢D) =0, (d)
degD > 0= ¢(D) = deg D.

References for this lecture are the following sections in Miranda’s book:
Chapter V Section 2, “Principal Divisors on a Complex Torus”; Chapter V
Section 3, “Computation of L(D) for the Riemann Sphere”. “Computaiont of
L(D) for a Complex Torus”, “A Bound on the Dimension of L(D)”.

Lecture 24 (Wednesdayday, April 20)

1.

Definition of an algebraic curve. Examples: P!, C/L. Fact: Any compact
Riemann surface is an algebraic curve.
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2. Statement of the Riemann-Roch Theorem (Second Form): Let X be an
algebraic curve of genus g. Let D be any divisor on X, and let K by any
canonical divisor on X. Then

{D)—¥4(K—-D)=degD+1—g.
Proof of the Riemann-Roch Theorem for P* and C/A.

3. A consequence of the Riemann-Roch Theorem: if X is an algebraic curve
of genus g, then dime Qx(X) = (K) = g. (This is item 3 of Lecture 18.)

4. Let X = {[z :y: 2] € P? | F(z,y,2) = 0} be a smooth projective curve,
where F' € Clz,y, 2] is a homogeneous polynomial of degree d > 3. We
have seen that if p(u,v) € Clu,v] is a polynomial of degree at most d — 3,

then
p(u U)diu
g uw)
is a holomorphic 1-form on Xy = {(u,v) € C? | F(u,v,1) = 0} which
extends to a holomorphic 1-form on X. There is an injective linear map
i:V = {p(u,v)Clu,v] | degp < d — 3} = Qx(X) sending p(u,v) to (the
: u : d—1)(d—2
extension of) p(u,v)-+——. Moreover, dim¢ V = % =g(X) =

5L (u,v)
dime 2x(X). So ¢ is a linear isomorphism.

5. Let X be a hyperelliptic Riemann surface defined as in Assignment 6
(3). Assume that g > 1. Then there is an injective linear map i : V =
{p(z) € Clz] | degp < g — 1} — Qx(X) sending p(z) to (the extension
of) p(x)y~tdx. Moreover, dim¢ V = dime Qx(X) = ¢g. So i is a linear
isomorphism.

References for this lecture are the following sections in Miranda’s book:

Chapter VI Section 1, “Separating Points and Tangents”, Chapter VI Section
3, “The Riemann-Roch Theorem II”, Problem VI.3H, I.

Lecture 25 (Monday, April 26)

1. Definition of presheaves/sheaves of abelian groups on a topological space.
Examples: X is a Riemann surface, OX,MX,(’)X[D],Q&,M?,Q}( [D]
are sheaves of abelian groups on X.

2. Let F be a sheaf of abelian groups on a topological space X. Definition
of the stalk F, of F at at a point p € X. For any open neighborhood U
of p there is a group homorphism F(U) — F, sending f € F(U) to its
equivalence class in F,.

3. Let D be a divisor on a compact Riemann surface X, and let p € X.
Define T[D], := (Mx),/Ox[D],. There is a short exact sequence of
abelian groups (indeed complex vector spaces):

0 — Ox[D], = (Mx)p “&" T[D], — 0.
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4. Lemma: Let f be a meromorphic function on a compact Riemann surface
X. Let D € Div(X). If app(fp) # 0 then p is a pole of f or p is in the
support of D.

Therefore {p € X | app(fp) # 0} is a finite subset of X. This allows us
to define a complex linear map.

ap i Mx(X) = TID]:== @ TDl, f D apy(fy)p-

Then Ker(ap) = L(D). We define H'(D) to be the cokernel of ap.
Theorem: H'(D) is finite dimensional.

5. The Riemann-Roch Theorem (First Form): Let D be a divisor on an
algebraic curve X. Then

dim L(D) — dim H'(D) = deg D + 1 — dim H*(0).
Note that the above equation can be rewritten as
dim L(D) — dim H'(D) — deg D = dim L(0) — dim H'(0) — deg(0).

It suffices to show that the left hand side is a constant independent of
D € Div(X).

References for this lecture are the following sections in Miranda’s book:
Chapter IX Section 1, “Presheaves”, “Examples of Presheaves”, “The Sheaf
Axiom”, Problem IX.1I; Chapter VI Section 2, “Definition of Laurent Tail Di-
visors”, “Mittag-Lefler Problems adn H'(D)” ; Chapter VI Section 3, “The
Riemann-Roch Theorem I”.

Lecture 26 (Wednesday, April 27)

1. Proof of Riemann-Roch Theorem (First Form).

2. Residue map: Let X be a compact Riemann surface, and let D be a divisor
on X.

(1) Given p € X, define Res,, : (Mgp)p — C.
(2) Given p € X and w, € (Mgp)p, define Res,,, : (Mx), — C by
Resy, (fp) = Resp(fpwp). If
wp € Ak [=D, = {wp € (M), | ordy (@) > D(p)

and
fp € Ox[D]p = {fp € (Mx)p | ord,(f) > =D(p)},

then fow, € (%), C Ker(Resy). So if w, € Q4 [-D], then Res,,
descends to a complex linear functional

Res,,, : T[D], = (Mx),/Ox[D], = C.
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(3) Given w € Q% [~D](X) = LM (-D), define Res,, : T[D] — C by

Resw(z rpp) = Z Res,,,rp = Z Resp (1pwp),
peX peEX peEX
where r, € T[D],.

Lemma: If w is a meromorphic 1-form on a compact Riemann surface

X then ° c Resy(wp) = 0. Therefore if f € Mx(X) and w €

L(l)(*D) then Res, o ap(f) = Zpex Resp(fpwp) = 0. Therefore
Res,, descends to a linear functional

Res,, : H'(D) = T[D]/Im(ap) — C.

(4) There is a complex linear map Res : L()(D) — H'(D)* given by
w +— Res,,.

3. Serre Duality: Let D be a divisor on an algebraic curve X. Then Res :
LM(D) — HY(D)* is a linear isomorphism. Derivation of Riemann-Roch
Theorem (Second Form) from Riemann-Roch Theorem (First Form) and
Serre Duality.

The reference for this lecture is Chapter VI Section 3 of Miranda’s book.
Lecture 27 (Monday, May 2)
Proof of the Serre Duality.

The reference for this lecture is the following section of Miranda’s book:
Chapter VI, Section 3, “Serre duality”.
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