Mathematics W4045. Algebraic Curves, Spring 2011

Lecture 1 (Wednesday, January 19)

- 1. Warmup: real algebraic curves in \mathbb{R}^2 . Examples: (1) $y x^2 = 0$, (2a) $x^2 + y^2 1 = 0$, (2b) $x^2 y^2 1 = 0$, (2c) $x^2 y^2 = 0$, (2d) $x^2 + y^2 = 0$, (2e) $x^2 + y^2 + 1 = 0$.
- 2. Complex algebraic curves in \mathbb{C}^2 (i.e. affine plane curves. Examples: (1) $w - z^2 = 0$, (2a) $z^2 + w^2 - 1 = 0$, (2b) $z^2 - w^2 - 1 = 0$, (2c) $z^2 - w^2 = 0$, (2d) $z^2 + w^2 = 0$, (2e) $z^2 + w^2 + 1 = 0$. (2a), (2b), (2e) are equivalent; (2c), (2d) are equivalent. Bijections between \mathbb{C} and (1), between $\mathbb{C} - \{0\}$ and (2b).
- 3. Irreducibility, irreducible components. Check examples in 2. above.
- 4. Smooth points, singular points, smooth (nonsingular) curves. Check examples in 2. above.
- 5. Implicit Function Theorem.

Lecture 2 (Monday, January 24)

- Definition of topological spaces. Examples: C with the standard topology, C with the Zariski topology.
- 2. Definition of a Hausdorff topological space. Examples: the standard topology on \mathbb{C} is Hausdorff; the Zarisky topology on \mathbb{C} is not.
- 3. Definition of a metric space. Examples: \mathbb{R}^n , \mathbb{C}^n . A metric space is a Hausdorff topological space.
- 4. Subspace of a topological space or a metric space. Example: a complex algebraic curve in \mathbb{C}^2 (i.e. affine plane curve) with the subspace topology is a Hausdorff topological space.
- 5. Continuity, homeomorphism. Examples: (1) The affine plane curve $w z^2 = 0$ is homeomorphic to \mathbb{C} , (2) The affine plane curve $z^2 w^2 1 = 0$ (or $z^2 + w^2 1 = 0$ or $z^2 + w^2 + 1 = 0$) is homeomorphic to $\mathbb{C} \{0\}$.
- 6. Open basis, second countability. Examples: \mathbb{R}^n , \mathbb{C}^n .
- 7. An affine plane curve is a second countable Hausdorff topological space.
- 8. Definition of a complex chart. Examples: $w z^2 = 0$, $z^2 w^2 1 = 0$.

Lecture 3 (Wednesday, January 26)

- 1. A complex chart near a smooth point of a affine plane curve. Compatibility of two complex charts.
- 2. Definition of a complex atlas. Equivalence of two complex atlases. Definition of a complex structure. Definition of a Riemann surface.
- 3. State: an irreducible affine plane curve is connected. Prove: an irreducible smooth affine plane curve is a Riemann surface.
- Compactness. Affine plane curves are not compact. First example of a compact Riemann surface: P¹; quotient topology.

Lecture 4 (Monday, January 31)

- 1. Second example of a compact Riemann surface: complex tori \mathbb{C}/L .
- 2. Definition of an *n*-dimensional complex chart, compatibility of two *n*-dimensional complex charts. Definition of an *n*-dimensional complex atlas, equivalence of two *n*-dimensional complex atlases.
- 3. Definition of an *n*-dimensional complex manifold. Example: \mathbb{P}^n .

Lecture 5 (Wednesday, February 2)

- 2. Irreducibility, irreducible components. Examples: $x^2 + y^2 + z^2 = 0$, $x^2 + y^2 = 0$. A line is a projective plane curve of the form ax + by + cz = 0, where $(a, b, c) \in \mathbb{C}^3 \{(0, 0, 0)\}$.
- 3. Smooth points and singular points of a projective plane curve. Euler's formula. Example: singular points of $x^2y^3 + x^2z^3 + y^2z^3 = 0$.
- 4. The three affine plane curves $X_i = X \cap U_i$ (i = 0, 1, 2) associated to a projective plane curve X. [1, a, b]/[a, 1, b]/[a, b, 1] is a singular point of X iff (a, b) is a singular point of $X_0/X_1/X_2$. Revisit the example $x^2y^3 + x^2z^3 + y^2z^3 = 0$.
- 5. State: any nonsingular projective plane curve is irreducible. Prove: any nonsingular projective plane curve is a compact Riemann surface.

Lecture 6 (Monday, February 7)

- 1. More preliminaries on topology: let X, Y be topological spaces.
 - (1) $f: X \to Y$ is continuous, $A \subset X, B \subset Y, f(A) \subset B$ $\Rightarrow f|_A: A \to B$ is continuous.

- (2) X is compact, A is a closed subset of $X \Rightarrow A$ is compact.
- (3) $f: X \to Y$ is continuous, X is compact $\Rightarrow f(X)$ is compact.
- (4) X is Hausdorff, A is a compact subset of X, $p \in X \setminus A \Rightarrow$ There exists open set U, V in X such that $p \in U, A \subset V, U \cap V = \emptyset$.
- (5) X is Hausdorff, A is a compact subset of $X \Rightarrow A$ is a closed set in X.
- (6) $f: X \to Y$ is a bijective continuous map, X is compact, Y is Hausdorff $\Rightarrow f$ is a homeomorphism.
- 2. Definitions of holomorphic functions on an open subset W of a Riemann surface X. The set $\mathcal{O}_X(W)$ of holomorphic functions on W is a \mathbb{C} -algebra. Examples:
 - (1) $X = \mathbb{C}$: agrees with the old definition.
 - (2) If $\phi: U \to V$ a complex chart on X then $f: U \to \mathbb{C}$ is holomophic $\Leftrightarrow f \circ \phi^{-1}: V \to \mathbb{C}$ is holomorphic.
 - (3) Let $g, h \in \mathbb{C}[z, w]$ be homogeneous of the same degree d. Then $\frac{g}{h}$ is a holomorphic function on the open subset $W = \{[z : w] \in \mathbb{P}^1 \mid h(z, w) \neq 0\}$ of \mathbb{P}^1 .
 - (4) Let $X = \{(z, w) \in \mathbb{C}^2 \mid f(z, w) = 0\}$ be a smooth irreducible affine plane curve, so that it is a Riemann surface. Let $g, h \in \mathbb{C}[z, w]$, where h is not divisble by f. Then $\frac{g}{h}$ is a holomoprhic function on the open subset $W = \{(z, w) \in X \mid h(z, w) \neq 0\}$ of X. In particular, g is a holomorphic function on X.

Lecture 7 (Wednesday, February 9)

- 1. Singularities of a function f defined and holomorphic on a punctured neighborhood of a point p in a Riemann surface X. Meromorphic functions. The set $\mathcal{M}_X(W)$ of meromorphic functions on an open subset Win X is a field.
- 2. Definition of $\operatorname{ord}_p(f)$ for a meromorphic function f at $p \in X$. f is holomorphic or has a removable singularity at p iff $\operatorname{ord}_p(f) \ge 0$; f has a zero (resp. pole) at p iff $\operatorname{ord}_p(f) > 0$ (resp. $\operatorname{ord}_p(f) < 0$).
- 3. Examples of meromorphic functions:
 - (1) $X = \mathbb{C}$: usual definition.
 - (2) $\phi: U \to V$ a complex chart on X, f is a meromorphic function on U iff $f \circ \phi^{-1}$ is a meromorphic function on V. $\mathcal{M}_X(U) \cong \mathcal{M}_{\mathbb{C}}(V)$.
 - (3) $g, h \in \mathbb{C}[z, w]$ homogeneous of the same degree, $h \neq 0$. Then $Z = \{[z:w] \in \mathbb{P}^1 \mid h(z, w) = 0\}$ is a finite subset of \mathbb{P}^1 and $\#Z \leq \deg h$. $W = \mathbb{P}^1 - Z$ is open in the standard and Zariski topology. (Aside: let X be a compact Riemann surface. $A \subset X$ is a closed set in

the Zariski topology on X iff A is empty or A = X or A is a finite nonempty set.)

$$\frac{g}{h}:\mathbb{P}^1\to\mathbb{C}\cup\infty,\quad [z:w]\mapsto\frac{g(z,w)}{h(z,w)}$$

is holomorphic on W and meromorphic on \mathbb{P}^1 .

(4) $X = \{(z, w) \in \mathbb{C}^2 \mid f(z, w) = 0\}$ irreducible nonsingular affine plane curve. $g, h \in \mathbb{C}[z, w], h \notin (f)$. We will see later that

$$Z = \{ (z:w] \in \mathbb{P}^1 \mid f(z,w) = h(z,w) = 0 \}$$

is a finite subset of X. W = X - Z is open in X.

$$\frac{g}{h}: X \to \mathbb{C} \cup \infty, \quad (z, w) \mapsto \frac{g(z, w)}{h(z, w)}$$

is holomorphic on W and meromorphic on X.

(5) $X = \{ [x : y : z] \in \mathbb{P}^2 \mid F(x, y, z) = 0 \}$ nonsingular projective plane curve. $G, H \in \mathbb{C}[x, y, z]$ homogeneous of the same degree, $H \notin (F)$. We will see later that

$$Z = \{ [x:y:z] \in \mathbb{P}^2 \mid F(x,y,z) = H(x,y,z) = 0 \}$$

is a finite subset of X and $\#Z \leq \deg F \deg H$. W = X - Z is open in the standard and Zariski topology on X.

$$\frac{G}{H}: X \to \mathbb{C} \cup \infty, \quad [x:y:z] \mapsto \frac{G(x,y,z)}{H(x,y,z)}$$

is holomorphic on W and meromorphic on X.

Lecture 8 (Monday, February 14)

- 1. Generalization of the following theorems from \mathbb{C} to a general Riemann surface X: (1) The zeros and poles of a nonzero meromorphic functions form a discrete set. (2) The identity theorem. (3) The maximum modulus theorem for holomorphic functions.
- 2. If X is a compact Riemann surface then (1) any nonzero meromorphic function on X has a finite number of zeros of poles, and (3) any holomophic function on X is constant. Any bounded entire function on \mathbb{C} can be extended to a holomorphic function on \mathbb{P}^1 , so it must be constant.
- 3. Any meromorphic function on \mathbb{P}^1 is of the form $\frac{g}{h}$, where $g, h \in \mathbb{C}[z, w]$ are homogeneous polynomials of the same degree.

Lecture 9 (Wednesday, February 16)

- 1. The theta function $\theta(z) = \sum_{n=-\infty}^{\infty} e^{\pi i (n^2 \tau + 2nz)}$ is holomorphic on \mathbb{C} . It satisfies $\theta(z+1) = \theta(z)$ and $\theta(z+\tau) = e^{-\pi i (\tau+2z)} \theta(z)$. It has simple zeros at $\frac{1+\tau}{2} + m + n\tau$, $m, n \in \mathbb{Z}$.
- 2. For any $x \in \mathbb{C}$, the translated theta function $\theta^{(x)} = \theta(z \frac{1+\tau}{2} x)$ is holomorphic on \mathbb{C} . It satisfies $\theta^{(x)}(z+1) = \theta^{(x)}(z)$ and $\theta(z+\tau) = -e^{-2\pi i(z-x)}\theta(z)$. It has simple zeros at $x + m + n\tau$, $m, n \in \mathbb{Z}$.

Lecture 10 (Monday, February 21)

1. Given complex numbers x_1, \ldots, x_k and nonzero integers e_1, \ldots, e_k satisfying (i) $x_i - x_j \notin L = \mathbb{Z} \oplus \mathbb{Z}\tau$ if $i \neq j$, (ii) $\sum_{i=1}^k e_i = 0$, and (iii) $\sum_{i=1}^k e_i x_i \in \mathbb{Z}$, there exists a meromorphic function f on \mathbb{C}/L such that

$$\operatorname{ord}_p f = \begin{cases} e_i, & \text{if } p = x_i + L \text{ for some } i \in \{1, \dots, k\}, \\ 0, & \text{otherwise.} \end{cases}$$

Moreover, such f is unique up to multiplication by a nonzero constant $c \in \mathbb{C}^*$. Indeed,

$$f \circ \pi(z) = c \prod_{i=1}^{k} \theta^{(x_i)}(z)^{e_i}$$

where $\pi : \mathbb{C} \to \mathbb{C}/L$ is the natrual projection.

2. We will see later that any nonzero meromorphic function on \mathbb{C}/L is of the form described above. This implies that if f is any meromorphic function on \mathbb{C}/L then

$$\sum_{p \in \mathbb{C}/L} \operatorname{ord}_p f = 0 \in \mathbb{Z}, \quad \sum_{p \in \mathbb{C}/L} (\operatorname{ord}_p f) p = L \in \mathbb{C}/L.$$

- 3. Definition of holomorphic maps between complex manifolds. Example: $F: X \to \mathbb{C}$ is a holomorphic map iff F is a holomorphic function on X.
- 4. Let $\{\phi_{\alpha} : U_{\alpha} \to V_{\alpha}\}$ be an *n*-dimensional complex atlas on *X*. Let $\{\phi'_{\beta} : U'_{\beta} \to V'_{\beta}\}$ be an *m*-dimensional complex atlas on *Y*. A map $F : X \to Y$ is holomorphic if and only if

$$\phi_{\beta}' \circ F \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(F^{-1}(U_{\beta}') \cap U_{\alpha}) \subset \mathbb{C}^n \to \mathbb{C}^m$$

is holomorphic where $F(U_{\alpha}) \cap U'_{\beta}$ is nonempty. Example: $g, h \in \mathbb{C}[z, w]$ homogeneous polynomial of the same degree, with no common factors, not both identically zero. Then $F : \mathbb{P}^1 \to \mathbb{P}^1$, $[z : w] \mapsto [g(z, w) : h(z, w)]$, is a well-defined holomorphic map.

- 5. Properties fo holomorphic maps:
 - (a) If $F : X \to Y$ is a holomorphic maps between Riemann surfaces, then $F : X \to Y$ is a continuous map between topological spaces.
 - (b) If $F: X \to Y$, $G: Y \to Z$ are holomorphic maps between Riemann surfaces then $G \circ F: X \to Z$ is a holomorphic map.
 - (c) If $F : X \to Y$ is a holomorphic map, f is a holomorphic function on an open subset W of Y, then $f \circ F$ is a holomorphic function on $F^{-1}(W)$.
 - (d) Let $F : X \to Y$ is a holomorphic map. Let f be a meromorphic function on an open subset W of Y, such that F(X) is not contained in the set of poles of f. Then $f \circ F$ is a meromorphic function on $F^{-1}(W)$.

From (c), if $F: X \to Y$ is a holomorphic map then for every open subset $W \subset Y$, there is a \mathbb{C} -algebra homomorphism

$$F^*: \mathcal{O}_Y(W) \to \mathcal{O}_X(F^{-1}(W)), \quad f \mapsto f \circ F.$$

From (d), if $F: X \to Y$ is a *nonconstant* holomorphic map then for every open subset $W \subset Y$, there is a \mathbb{C} -algebra homomorphism

$$F^*: \mathcal{M}_Y(W) \to \mathcal{M}_X(F^{-1}(W)), \quad f \mapsto f \circ F.$$

6. Isomorphism between Riemann surfaces. Automorphism of a Riemann surface. Example: given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in \mathbb{C}$, $ad - bc \neq 0$, the map $F_A : \mathbb{P}^1 \to \mathbb{P}^1$, $[z : w] \mapsto [az + bw : cz + dw]$ is an automorphism of \mathbb{P}^1 . $F_{A^{-1}} = F_A^{-1}$.

Lecture 11 (Wednesday, February 23)

- 1. Theorems on holomorphic maps between Riemann surfaces: (1) Discrete Preimage Theorem, (2) Identity Theorem, (3) Open Mapping Theorem. If $F: X \to Y$ is an injective holomorphic map then $F^{-1}: F(X) \to X$ is a holomorphic map.
- 2. If $F: X \to Y$ is a *nonconstant* holomorphic map from a *compact* Riemann surface X to a Riemann surface Y, then F is sujective, Y is compact, and $f^{-1}(y)$ is a nonempty finite set for any $y \in Y$. Example: $F: \mathbb{P}^1 \to X = \{[x, y, z] \in \mathbb{P}^2 \mid x^2 + y^2 z^2 = 0\}, [z_0: z_1] \mapsto [2z_0z_1: z_0^2 z_1^2: z_0^2 + z_1^2],$ is an isomorphism.
- Correspondence between nonconstant meromorphic functions and nonconstant holomorphic maps to P¹.

Lecture 12 (Monday, February 28)

- 1. Correspondence between nonconstant meromorphic functions and nonconstant holomorphic maps to \mathbb{P}^1 (continued). Any nonconstant holomorphic map $F : \mathbb{P}^1 \to \mathbb{P}^1$ is of the form $[z : w] \mapsto [g(z, w) : h(z, w)]$, where $g, h \in \mathbb{C}[z, w]$ are homogeneous of the same degree d > 0, with no common factors. Any automorphism of \mathbb{P}^1 is of the form described in item 6 of Lecture 10.
- 2. Let $F : X \to Y$ be a nonconstant holomorphic map between Riemann surfaces. Definition of $\operatorname{mult}_p F$, the multiplicity of F at a point $p \in X$. Ramification points and branch points. The Local Normal Form.
- 3. Let $X = \{(x, y) \in \mathbb{C}^2 \mid f(x, y) = 0\}$ be an irreducible, smooth affine plane curve, and define $\pi : X \to \mathbb{C}, (x, y) \mapsto x$. Then π is a holomorphic map. We assume that f(x, y) is not of the form ax+b, so that π is not a constant map. Then $(a, b) \in X$ is a ramification point of π iff $\frac{\partial f}{\partial y}(a, b) = 0$.

Lecture 13 (Wednesday, March 2)

- 1. Let $X = \{ [x:y:z] \in \mathbb{P}^2 \mid F(x,y,z) = 0 \}$ be a smooth projective plane curve. Suppose that $[0:1:0] \notin X$. Define $\pi: X \to \mathbb{P}^1, [x:y:z] \mapsto [x:z]$. Then π is a nonconstant holomorphic map. $[a:b:c] \in X$ is a ramification point of π iff $\frac{\partial F}{\partial y}(a,b,c) = 0$.
- 2. Example: $X = \{(x, y) \mid y^2 = h(x)\}$, where $h(x) \in \mathbb{C}[x]$ is a polynomial of degree d > 0, with distinct roots $\alpha_1, \ldots, \alpha_d$. Then the ramification points of $\pi : X \to \mathbb{C}, (x, y) \mapsto x$, are $(\alpha_1, 0), \ldots, (\alpha_d, 0) \in X$. The branch points of π are $\alpha_1, \ldots, \alpha_k \in \mathbb{C}$. For $k = 1, \ldots, d$, $\operatorname{mult}_{(\alpha_k, 0)} \pi = 2$.
- 3. Let F be the nonconstant holomorphic map from X to \mathbb{P}^1 associated to a nonconstant meromorphic function on X. Then for any $p \in X$,

$$\operatorname{mult}_{p} F = \begin{cases} \operatorname{ord}_{p} f, & \operatorname{ord}_{p} f > 0, \\ \operatorname{ord}_{p} (f - f(p)), & \operatorname{ord}_{p} f = 0, \\ -\operatorname{ord}_{p} f, & \operatorname{ord}_{p} f < 0. \end{cases}$$

4. The degree of a holomorphic map between compact Riemann surfaces. If f is a nonconstant meromorphic function on a compact Riemann surface X then $\sum_{p \in X} \operatorname{ord}_p f = 0$.

Lecture 14 (Monday, March 7)

- 1. Proof of Proposition 4.8 on page 47 of Miranda's book.
- 2. Definition of C^{∞} 2-manifold. Orientation. Any Riemann surface is an oriented C^{∞} 2-manifold.
- 3. The genus and Euler characteristic of compact Riemann surfaces.

Lecture 15 (Monday, March 21)

- 1. Connected sum of compact orientable surfaces.
- 2. Outline of the proof of the Hurwitz's formula.

Lecture 16 (Wednesday, March 23)

- 1. Holomorphic/meromophic 1-forms on an open set V of \mathbb{C} . Example: the differential df of a holomorphic/meromorphic function f on V.
- 2. The order $\operatorname{ord}_{z_0}(\omega)$ of a nonzero meromorphic 1-form ω on a connected open set V at $z_0 \in V$. Zeros and poles of ω .
- 3. The pullback $T^*\omega$ of a meromorphic 1-form ω on an open set V_2 of \mathbb{C} under a holomorphic map $T: V_1 \to V_2$, where V_1 is an open set of \mathbb{C} and the image of T is not contained in the set of poles of ω . Example: $z = T(w) = w^m$ (*m* is positive integer), $T^*dz = mw^{m-1}dw$. If $T: V_1 \to V_2$ and $S: V_2 \to V_3$ are nonconstant holomorphic maps between open sets in \mathbb{C} , and ω is a meromorphic 1-form on V_3 , then $(S \circ T)^*\omega = T^*S^*\omega$.
- 4. Let $T: V_1 \to V_2$ and ω be as in 3. above. For any $z_0 \in V_1$, we have

 $\operatorname{ord}_{z_0}(T^*\omega) = \operatorname{ord}_{T(z_0)}(\omega) \cdot \operatorname{mult}_{z_0}(T) + \operatorname{mult}_{z_0}(T) - 1.$

In particular, $\operatorname{ord}_{z_0}(T^*\omega) = \operatorname{ord}_{T(z_0)}(\omega)$ if T is a biholomorphic map.

- 5. Holomorphic/meromorphic 1-form ω on a Riemann surface X. Example: X is an open set in \mathbb{C} . If $\mathcal{A} = \{\phi_{\alpha} : U_{\alpha} \to V_{\alpha} \mid \alpha \in I\}$ is a complex atlas on X then a holomorphic/meromorphic 1-form ω is equivalent to a collection $\{\omega_{\alpha} \mid \alpha \in I\}$, where ω_{α} is a holomorphic/meromorphic 1-form on V_{α} , such that if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\omega_{\alpha} = (\phi_{\beta} \circ \phi_{\alpha}^{-1})^* \omega_{\beta}$ on $\phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset V_{\alpha}$.
- 6. The order $\operatorname{ord}_p(\omega)$ of a nonzero meromorphic 1-form ω on a Riemann surface X at $p \in X$. Zeros and poles of ω . If f is a nonzero meromorphic function on X, then $f\omega$ is a nonzero meromorphic 1-form on X, and $\operatorname{ord}_p(f\omega) = \operatorname{ord}_p(f) + \operatorname{ord}_p(\omega)$ for any $p \in X$.

References for this lecture are the following sections in Chapter IV of Miranda's book: Holomorphic 1-Forms, Meromorphic 1-Forms, Multiplication of 1-Forms by Functions, Differential of Functions, Pulling Back Differential Forms.

Lecture 17 (Monday, March 28)

1. The differential df of a meromorphic function f on a Riemann surface X. Example 1: $X = \mathbb{P}^1$, $f([z:w]) = \frac{z}{w}$,

$$\operatorname{ord}_p(df) = \begin{cases} 0, & p \in U_1 = \{ [z : w] \in \mathbb{P}^1 \mid w \neq 0 \}, \\ -2, & p = [1 : 0] \end{cases}$$

- 2. Example 2: $X = \mathbb{C}/L$, dz is a holomorphic 1-form on \mathbb{C} which descends to a holomorphic 1-form ω_0 on \mathbb{C}/L . ω_0 has no zeros. (Reference: Exercise B on page 111 of Miranda's book.)
- 3. If ω is a nonzero meromorphic 1-form on a Riemann surface X, then any meromorphic 1-form on X is of the form $h\omega$, where h is a meromorphic function on X. If ω_1, ω_2 are two nonzero meromoprhic 1-forms on a *compact* Riemann surface X, then

$$\sum_{p \in X} \operatorname{ord}_p(\omega_1) = \sum_{p \in X} \operatorname{ord}_p(\omega_2).$$

ŗ

- Example 1 (continued): Any meromorphic 1-form on \mathbb{P}^1 is of the form $\omega = \frac{g(z,w)}{h(z,w)} df$, where $g,h \in \mathbb{C}[z,w]$ are homogeneuous of the same degree, and f is defined as in 1. above. If ω is nonzero than $\sum_{p \in \mathbb{P}^1} \operatorname{ord}_p(\omega) = -2$. In particular, there is no nonzero holomorphic 1-form on \mathbb{P}^1 .
- Example 2 (continued): Any meromorphic 1-form on \mathbb{C}/L is of the form $\omega = h\omega_0$, where h is a meromorphic function on \mathbb{C}/L . If ω is nonzero then $\operatorname{ord}_p(\omega) = \operatorname{ord}_p(h)$ for all $p \in X$, and $\sum_{p \in \mathbb{C}/L} \operatorname{ord}_p(\omega) = 0$. ω is holomorphic iff h is holomorphic iff $\omega = c\omega_0$ for some constant

 ω is holomorphic iff h is holomorphic iff $\omega = c\omega_0$ for some constant $c \in \mathbb{C}$.

- 4. Fact: There is a nonconstant meromorphic function on any compact Riemann surface. Corollary: There is a nonzero meromorphic 1-form on any compact Riemann surface.
- 5. Let $X = \{(u, v) \in \mathbb{C}^2 \mid f(u, v) = 0\}$ be an irreducible smooth affine plane curve, so that it is a Riemann surface. $u, v, p(u, v) \in \mathbb{C}[u, v]$ restrict to holomorphic functions on X. So du, dv, p(u, v)du, p(u, v)dv are holomorphic 1-forms on X. If $q(u, v) \in \mathbb{C}[u, v]$ is not in the ideal (f) in $\mathbb{C}[u, v]$ generated by f(u, v), then $\frac{p(u, v)}{q(u, v)}du, \frac{p(u, v)}{q(u, v)}dv$ are meromorphic 1-forms on X. (Reference: Exercise C on page 111 of Miranda's book.)
- 6. Geometry of the hyperelliptic Riemann surface X defined in Assignment 6 (3). The mermorphic 1-form $y^{-1}dx$ on X_1 is indeed a holomorphic 1-form on X_1 . (Reference: Exercise G on page 112 of Miranda's book.)

Lecture 18 (Wednesday, March 30)

1. Geometry of genus 0 hyperelliptic Riemann surfaces $y^2 = x$ and $y^2 = x^2 - 1$.

- 2. We use the notation in Assignment 6 (3). We have seen that $y^{-1}dx$ is a holomorphic 1-form on X_1 . If $p \in X_1$ is not a ramification point of π , then $\operatorname{ord}_p(dx) = 0$ and $\operatorname{ord}_p(y^{-1}) = 0$, so $\operatorname{ord}_p(y^{-1}dx) = 0$. If $p \in X_1$ is a ramification point of π , then $\operatorname{ord}_p(dx) = 1$ and $\operatorname{ord}_p(y^{-1}) = -1$, so $\operatorname{ord}_p(y^{-1}dx) = 0$. Therefore $y^{-1}dx$ has no zeros in X_1 . $(\phi^{-1})^*(y^{-1}dx) = -z^{g-1}w^{-1}dz$. By similar argument, $w^{-1}dz$ is a holomorphic 1-form on X_2 with nonzeros on X_2 .
 - If g = 0 then $y^{-1}dx$ extends to a meromorphic 1-form on X which has no zeros and has poles at the points in $X \setminus X_1 = \pi^{-1}([1:0])$.
 - If g = 1 then $y^{-1}dx$ extends to a holomorphic 1-form on X which has no zeros. Any holomorphic 1-form on X is a constant multiple of this holomorphic 1-form.
 - Suppose that $g \ge 2$. For any $p(x) \in \mathbb{C}[x]$, $p(x)y^{-1}dx$ is a holomorphic 1-form on X_1 .

$$(\phi^{-1})^*(y^{-1}dx) = -z^{g-1}p(\frac{1}{z})w^{-1}dz$$

which is holomorphic on X_2 if deg $p \ge g - 1$. Therefore,

$$y^{-1}dx, xy^{-1}dx, \dots, x^{g-1}y^{-1}dx$$

are holomorphic 1-forms on X. Indeed (to be proved later), they form a basis of $\Omega_X^1(X)$, the space of holomorphic 1-forms on X:

$$\Omega^1_X(X) = \bigoplus_{i=0}^{g-1} \mathbb{C}x^i y^{-1} dx.$$

- 3. Fact (to be proved later): If X be a compact Riemann surface of genus g then dim_C $\Omega^1_X(X) = g$.
- 4. Let $F: X \to Y$ be a holomorphic map between Riemann surfaces, let ω be a meromorphic 1-form on Y. Definition of the pull back $F^*\omega$ of ω (when F is not a constant map to a pole of ω). Composition: $(G \circ F)^*\omega = F^*G^*\omega$.
- 5. Lemma: Let $F : X \to Y$ be a nonconstant holomorphic map, and let ω be a nonzero meromorphic 1-form on Y. Then for any $p \in X$.

$$\operatorname{ord}_p(F^*\omega) = \operatorname{mult}_p(F)\operatorname{ord}_{F(p)}(\omega) + \operatorname{mult}_p(F) - 1.$$

6. Theorem: Let ω be a nonzero meromorphic 1-form on a compact Riemann surface X. Then

$$\sum_{p \in X} \operatorname{ord}_p(\omega) = 2g(X) - 2.$$

 Definition of a divisor D on a Riemann surface X. Divisors on X form an additive group Div(X). Examples: (i) principal divisors, (ii) canonical divisors, (iii) on P¹,

$$\operatorname{div}(\frac{z(z-1)}{w^2}) = [0:1] + [1:1] - 2[1:0], \quad \operatorname{div}(d(\frac{z}{w})) = -2[1:0].$$

References for this lecture are the following sections in Miranda's book: Chapter III Section 1, "Hyperelliptic Riemann Surfaces"; Chapter IV Section 2, "Pulling Back Differential Forms"; Chapter V Section 1, "The Definition of a Divisor", "The Divisor of a Meromorphic Function: Principal Divisors", "The Divisor of a Meromorphic 1-Form: Canonical Divisors", "The Degree of a Canonical Divisor on a Compact Riemann Surface".

Lecture 19 (Monday, April 4)

- 1. Let X be a Riemann surface. The set of principal divisors on X, PDiv(X), is a subgroup of Div(X). The set of canonincal divisors on X, KDiv(X), is a coset in Div(X)/PDiv(X). We say two divisors $D_1, D_2 \in Div(X)$ are linearly equivalent, written $D_1 \sim D_2$, if $D_1 - D_2 \in PDiv(X)$.
- 2. If X is a compact Riemann surface then there is a surjective group homomorphism deg : $\operatorname{Div}(X) \to \mathbb{Z}$. Let $\operatorname{Div}_d(X) = \deg^{-1}(d)$ be the set of degree d divisors on X. In particular, $\operatorname{Div}_0(X) = \operatorname{Ker}(\operatorname{deg})$ is a subgroup of $\operatorname{Div}(X)$. Then $\operatorname{PDiv}(X) \subset \operatorname{Div}_0(X)$ and $\operatorname{KDiv}(X) \subset \operatorname{Div}_{2g-2}(X)$, where g is the genus of X.
- 3. State the Fact (proved in Chapter VIII of Miranda's book): If X is a compact Riemann surface of genus g, then there is a group isomorphism $\text{Div}_0(X)/\text{PDiv}(X) \cong \mathbb{C}^g/\Lambda$, where Λ is a rank 2g lattice in \mathbb{C}^g . \mathbb{C}^g/Λ is homeomorphic to $(S^1)^{2g}$. Prove the Fact when $X = \mathbb{P}^1$ (the projective line) or $X = \mathbb{C}/L$ (a compact torus).
- 4. Let $F : X \to Y$ be a nonconstant holomorphic map between Riemann surfaces. Definitions of the inverse image divisor $F^*(q) \in \text{Div}(X)$, where $q \in Y$, and the pullback divisor $F^*(D) \in \text{Div}(X)$, where $D \in \text{Div}(Y)$.

References for this lecture are the following sections in Miranda's book: Chapter V Section 1, "The Definition of a Divisor", "The Divisor of a Meromorphic Function: Principal Divisors", "The Degree of a Divisor on a Compact Riemann Surface", "The Divisor of a Meromorphic 1-Form: Canonical Divisors", "The Inverse Image Divisor of a Holomorphic Map"; Chapter V Section 2, "The Definition of Linear Equivalence", "Principal Divisors on a Complex Torus"; Chapter II Section 4, "Meromorphic Functions on a Complex Torus, Yet Again"

Lecture 20 (Wednesday, April 6)

- 1. Let $F : X \to Y$ be a nonconstant holomorphic map between Riemann surfaces. Definitions of the ramification divisor $R_F \in \text{Div}(X)$ and the branch divisor $B_F \in \text{Div}(Y)$ of F.
- 2. Lemma: Let $F:X\to Y$ be a nonconstant holomorphic map between Riemann surfaces.
 - (1) $F^* : \text{Div}(X) \to \text{Div}(Y)$ is a group holomorphism.
 - (2) If f is a nonzero meromorphic function on Y, then

$$\operatorname{div}(F^*f) = F^*\operatorname{div}(f) \in \operatorname{PDiv}(X).$$

(3) If ω is a nonzero meromorphic 1-form on Y, then

$$\operatorname{div}(F^*\omega) = F^*\operatorname{div}(\omega) + R_F \in \operatorname{KDiv}(X).$$

- (4) If X, Y are compact, then $\deg(F^*D) = \deg F \deg D$.
- 3. Remarks on the above Lemma:
 - By (2), $F^*(\operatorname{PDiv}(Y)) \subset \operatorname{PDiv}(X)$.
 - When X, Y are compact, taking the degree of the equality in (3), we recover the Hurwitz's formula

$$2g(X) - 2 = \deg F(2g(Y) - 2) + \sum_{x \in X} (\operatorname{mult}_p(F) - 1).$$

- By (4), when X, Y are compact, $F^*(\text{Div}_d(Y)) \subset \text{Div}_{d \deg F}(X)$.
- 4. The divisor of zeros, $\operatorname{div}_0(f)$, and the divisor of poles, $\operatorname{div}_\infty(f)$, of a nonzero meromorphic function f on a Riemann surface. $\operatorname{div}(f) = \operatorname{div}_0(f) \operatorname{div}_\infty(f)$.
- 5. The partial ordering on divisor: given two divisors D_1, D_2 on a Riemann surface $X, D_1 \ge D_2 \Leftrightarrow D_1(p) \ge D_2(p)$ for all $p \in X$. We say a divisor is effective if $D \ge 0$. Examples: (1) Given a nonconstant holomorphic map $F: X \to Y$ between Riemann surfaces, $R_F \ge 0$, $B_F \ge 0$, and $F^*(q) \ge 0$ for any $q \in Y$. (2) Given a nonzero meromoprhic function f on a Riemann surfaces, $\operatorname{div}_0(f) \ge 0$, $\operatorname{div}_\infty(f) \ge 0$.

Let D be a divisor on a Riemann surface X. Then $D = D_1 - D_2$, where

$$D_1 = \sum_{p \in X, D(p) > 0} D(p) \cdot p \ge 0, \quad D_2 = \sum_{p \in X, D(p) < 0} (-D(p)) \cdot p \ge 0.$$

6. The intersection divisor $\operatorname{div}(G)$ of a homogeneous polynomial $G \in \mathbb{C}[x, y, z]$ on a smooth projective plane curve $X = \{[x : y : z] \in \mathbb{P}^2 \mid F(x, y, z) = 0\}$, where G is not in the (prime) ideal generated by F. Lemma: (a) $\operatorname{div}(G_1G_2) = \operatorname{div}(G_1) + \operatorname{div}(G_2)$, (b) $\operatorname{deg} G_1 = \operatorname{deg} G_2 \Rightarrow \operatorname{div}(G_1) - \operatorname{div}(G_2) = \operatorname{div}(\frac{G_1}{G_2}) \Rightarrow \operatorname{div}(G_1) \sim \operatorname{div}(G_2)$. References for this lecture are the following sections in Miranda's book: Chapter V Section 1, "The Divisor of a Meromorphic Function: Principal Divisors", "The Inverse Image Divisor of a Holomorphic Map", "The Ramification and Branch Divisor of a Holomorphic Map", "Intersection Divisors on a Smooth Projective Curves", "The Partial Ordering on Divisors".

Lecture 21 (Monday, April 11)

In this lecture, $X = \{ [x: y: z] \in \mathbb{P}^2 \mid F(x, y, z) = 0 \}$ is a smooth projective plane curve, where $F \in \mathbb{C}[x, y, z]$ is a homogeneous polynomial of degree d > 0.

1. Assume that $[0:1:0] \notin X$. Define

$$\pi: X \to \mathbb{P}^1, \quad [x:y:z] \mapsto [x:z].$$

By item 1 of Lecture 13,

- π is a nonconstant holomorphic map,
- $[a:b:c] \in X$ is a ramification point of π iff $\frac{\partial F}{\partial u}(a,b,c) = 0$.

Proposition: (1) For any $[a:c] \in \mathbb{P}^1$, $\pi^*([a:c]) = \operatorname{div}(cx - az) \in \operatorname{Div}(X)$. (2) $R_{\pi} = \operatorname{div}(\frac{\partial F}{\partial y}) \in \operatorname{Div}(X)$. (3) $\operatorname{deg}(\pi) = \operatorname{deg}(\operatorname{div}(cx - az)) = d$.

- 2. Bezout's Theorem: Let $G \in \mathbb{C}[x, y, z]$ be a homogeneous polynomial of degree e which is not in the ideal generated by F. Then $\deg(\operatorname{div} G) = de$.
- 3. Plücker's formula: $g(X) = \frac{(d-1)(d-2)}{2}$.

References for this lecture are the following sections in Miranda's book: Chapter V Section 2, "The Degree of a Smooth Projective Curve", "Bezout's Theorem for Smooth Projective Plane Curves", "Plücker's Formula".

Lecture 22 (Wednesday, April 13)

- 1. Let X be a Riemann surface. Let 0 be the zero function on X, and let d0 be the zero holomorphic 1-form on X. We define $\operatorname{ord}_p(0) = \operatorname{ord}_p(d0) = +\infty$ for any $p \in X$.
- 2. Let X be a Riemann surface. For any open set U in X, let $\mathcal{M}_X(U)$ (resp. $\mathcal{M}_X^{(1)}(U)$) denote the space of meromorphic functions (resp. 1forms) on U. Then $\mathcal{M}_X(U)$ and $\mathcal{M}_X^{(1)}(U)$ are complex vector spaces. Given $D \in \text{Div}(X)$, define

$$L(D) = \{f \in \mathcal{M}_X(X) \mid f = 0 \text{ or } \operatorname{div}(f) \ge -D\}$$

= $\{f \in \mathcal{M}_X(X) \mid \operatorname{ord}_p(f) \ge -D(p) \text{ for all } p \in X\},$
$$L^{(1)}(D) = \{\omega \in \mathcal{M}_X^{(1)}(X) \mid f = 0 \text{ or } \operatorname{div}(\omega) \ge -D\}$$

= $\{\omega \in \mathcal{M}_X^{(1)}(X) \mid \operatorname{ord}_p(\omega) \ge -D(p) \text{ for all } p \in X\}.$

L(D) (resp. $L^{(1)}(D)$) is called the space of meromorphic functions (resp. 1-forms) with poles bounded by D.

- 3. Lemma: Let X be a Riemann surface.
 - (1) L(D) is a complex linear subspace of $\mathcal{M}_X(X)$; $L^{(1)}(D)$ is a complex linear subspace of $\mathcal{M}_X^{(1)}(X)$.
 - (2) $L(0) = \mathcal{O}_X(X), L^{(1)}(0) = \Omega_X(X).$
 - (3) If $D_1 \leq D_2$ then $L(D_1) \subset L(D_2)$ and $L^{(1)}(D_1) \subset L^{(1)}(D_2)$.
 - (4) If $D_1 \sim D_2$ then there are linear isomorphisms $L(D_1) \cong L(D_2)$ and $L^{(1)}(D_1) \cong L^{(1)}(D_2)$.
 - (5) Let $K = \operatorname{div}(\omega)$ be a canoncial divisor on X. Then there is a linear isomorphism $L(D+K) \cong L^{(1)}(D)$.

Outline of proofs of (4) and (5):

- (4) If h is a nonzero meromorphic function on X then there is a linear isomorphism $\mu_h : \mathcal{M}_X(X) \to \mathcal{M}_X(X), f \mapsto fh.$ $\mu_h(L(\operatorname{div}(h) + D)) = L(D).$
- (5) If ω is a nonzero meromorphic 1-form on X then there is a linear isomorphism $\mu_{\omega} : \mathcal{M}_X(X) \to \mathcal{M}_X^{(1)}(X), f \mapsto f\omega.$ $\mu_h(L(\operatorname{div}(\omega) + D)) = L^{(1)}(D).$
- 4. Lemma: Let X be a *compact* Riemann surface. Then (a) $L(0) \cong \mathbb{C}$. (b) deg $D < 0 \Rightarrow L(D) = \{0\}$.
- 5. Let D be a divisor on a Riemann surface X. The complete linear system of D, |D|, is the set of all effective divisors $E \ge 0$ on X which are linearly equivalent to X:

$$|D| = \{E \in \operatorname{Div}(X) \mid E \sim D \text{ and } E \ge 0\}.$$

There is a surjective map $\pi : L(D) - \{0\} \to |D|$ given by $f \mapsto \operatorname{div}(f) + D$. $\pi(f_1) = \pi(f_2)$ iff $\frac{f_1}{f_2}$ is a meromorphic functions on X with no zero and pole.

We now assume that X is *compact*. Then $\pi_1(f_1) = \pi_2(f_2)$ iff $\frac{f_1}{f_2}$ is a nonzero constant, and we have a bijection

$$\mathbb{P}(L(D)) := (L(D) - \{0\})/\mathbb{C}^* \to |D|.$$

6. Let $D \in \text{Div}(\mathbb{P}^1)$. If deg D < 0 then $L(D) = \{0\}$. We want to compute L(D) when $d = \deg D \ge 0$. We have $D \sim dp_0$, where $p_0 = [1:0]$.

$$L(dp_0) = \left\{ \frac{p(z,w)}{w^d} \mid p(z,w) \in \mathbb{C}[z,w] \text{ is either the zero polynomial} \\ \text{ or a homogeneous polynomial of degree } d \right\}$$

$$\cong \mathbb{C}^{d+1}$$

References for this lecture are the following sections in Miranda's book: Chapter V Section 3, "The Definition of the Space L(D)", "Isomorphisms between L(D)'s under Linear Equivalence", "The Definition of the Space $L^{(1)}(D)$ ", "The Isomorphism between $L^{(1)}(D)$ and L(D+K)", "Computation of L(D) for the Riemann Sphere".

Lecture 23 (Monday, April 18)

1. Let $D = \sum_{i=1}^{k} e_i[a_i : b_i]$ be a divisor of degree $d \ge 0$ on \mathbb{P}^1 , where $[a_1 : b_1]$, $[a_k : b_k]$ are distinct points in \mathbb{P}^1 , e_1, \ldots, e_k are nonzero integers, and $e_1 + \cdots + e_k = 0$ }. Then

$$L(D) = \left\{ \frac{p(z,w)}{\prod_{i=1}^{k} (b_i z - a_i w)^{e_i}} \mid p(z,w) \in \mathbb{C}[z,w] \text{ is the either zero} \right.$$

polynomial or a homogeneous polynomial of degree $d \right\}$
 $\cong \mathbb{C}^{d+1}.$

- 2. Let X be a Riemann surface, $D \in \text{Div}(X)$, $p \in X$. Then the codimension of L(D-p) in L(D) is either 0 or 1.
- 3. Let X be a compact Riemann surface. Then L(D) is finite dimensional for any $D \in \text{Div}(X)$. Indeed, if we write D = P - N, where $P, N \ge 0$, then $\ell(D) \le \deg P + 1$, where $\ell(D) = \dim_{\mathbb{C}} L(D)$.
- 4. Let $X = \mathbb{C}/L$ be a complex torus. Define the Abel-Jacobi map A: $\operatorname{Div}(X) \to X = \mathbb{C}/L$ by $A(D) = \sum_{p \in X} D(p)p$ (sum in the additive group \mathbb{C}/L). Then $D_1 \sim D_1$ iff deg $D_1 = \deg D_2$ and $A(D_1) = A(D_2)$. Lemma: If $D \in \operatorname{Div}(X)$ and deg D > 0, then D is linearly equivalent to a positive divisior (i.e. a nonzero effective divisor). Moreover, if deg D = 1 then $D \sim q$ for a unique point $q \in X$; if deg D > 1 then for any $x \in X$ there exists a positive divisor E > 0 on X such that $E \sim D$ and E(x) = 0.
- 5. Let $D \in \text{Div}(\mathbb{C}/L)$. Then (a) deg $D < 0 \Rightarrow \ell(D) = 0$, (b) deg D = 0and $D \sim 0 \Rightarrow \ell(D) = 1$, (c) deg D = 0 and $D \not\sim 0 \Rightarrow \ell(D) = 0$, (d) deg $D > 0 \Rightarrow \ell(D) = \text{deg } D$.

References for this lecture are the following sections in Miranda's book: Chapter V Section 2, "Principal Divisors on a Complex Torus"; Chapter V Section 3, "Computation of L(D) for the Riemann Sphere". "Computation of L(D) for a Complex Torus", "A Bound on the Dimension of L(D)".

Lecture 24 (Wednesdayday, April 20)

1. Definition of an algebraic curve. Examples: \mathbb{P}^1 , \mathbb{C}/L . Fact: Any compact Riemann surface is an algebraic curve.

2. Statement of the Riemann-Roch Theorem (Second Form): Let X be an algebraic curve of genus g. Let D be any divisor on X, and let K by any canonical divisor on X. Then

$$\ell(D) - \ell(K - D) = \deg D + 1 - g.$$

Proof of the Riemann-Roch Theorem for \mathbb{P}^1 and \mathbb{C}/Λ .

- 3. A consequence of the Riemann-Roch Theorem: if X is an algebraic curve of genus g, then $\dim_{\mathbb{C}} \Omega_X(X) = \ell(K) = g$. (This is item 3 of Lecture 18.)
- 4. Let $X = \{[x : y : z] \in \mathbb{P}^2 \mid F(x, y, z) = 0\}$ be a smooth projective curve, where $F \in \mathbb{C}[x, y, z]$ is a homogeneous polynomial of degree $d \geq 3$. We have seen that if $p(u, v) \in \mathbb{C}[u, v]$ is a polynomial of degree at most d - 3, then

$$p(u,v)\frac{du}{\frac{\partial f}{\partial v}(u,v)}$$

is a holomorphic 1-form on $X_2 = \{(u,v) \in \mathbb{C}^2 \mid F(u,v,1) = 0\}$ which extends to a holomorphic 1-form on X. There is an injective linear map $i: V = \{p(u,v)\mathbb{C}[u,v] \mid \deg p \leq d-3\} \rightarrow \Omega_X(X)$ sending p(u,v) to (the extension of) $p(u,v)\frac{du}{\frac{\partial f}{\partial v}(u,v)}$. Moreover, $\dim_{\mathbb{C}} V = \frac{(d-1)(d-2)}{2} = g(X) =$ $\dim_{\mathbb{C}} \Omega_X(X)$. So *i* is a linear isomorphism.

5. Let X be a hyperelliptic Riemann surface defined as in Assignment 6 (3). Assume that $g \ge 1$. Then there is an injective linear map $i : V = \{p(x) \in \mathbb{C}[x] \mid \deg p \le g - 1\} \to \Omega_X(X)$ sending p(x) to (the extension of) $p(x)y^{-1}dx$. Moreover, $\dim_{\mathbb{C}} V = \dim_{\mathbb{C}} \Omega_X(X) = g$. So i is a linear isomorphism.

References for this lecture are the following sections in Miranda's book: Chapter VI Section 1, "Separating Points and Tangents", Chapter VI Section 3, "The Riemann-Roch Theorem II", Problem VI.3H, I.

Lecture 25 (Monday, April 26)

- 1. Definition of presheaves/sheaves of abelian groups on a topological space. Examples: X is a Riemann surface, $\mathcal{O}_X, \mathcal{M}_X, \mathcal{O}_X[D], \Omega^1_X, \mathcal{M}^{(1)}_X, \Omega^1_X[D]$ are sheaves of abelian groups on X.
- 2. Let \mathcal{F} be a sheaf of abelian groups on a topological space X. Definition of the stalk \mathcal{F}_p of \mathcal{F} at at a point $p \in X$. For any open neighborhood Uof p there is a group homorphism $\mathcal{F}(U) \to \mathcal{F}_p$ sending $f \in \mathcal{F}(U)$ to its equivalence class in \mathcal{F}_p .
- 3. Let D be a divisor on a *compact* Riemann surface X, and let $p \in X$. Define $\mathcal{T}[D]_p := (\mathcal{M}_X)_p / \mathcal{O}_X[D]_p$. There is a short exact sequence of abelian groups (indeed complex vector spaces):

$$0 \to \mathcal{O}_X[D]_p \to (\mathcal{M}_X)_P \stackrel{\alpha_{D,p}}{\to} \mathcal{T}[D]_p \to 0.$$

4. Lemma: Let f be a meromorphic function on a compact Riemann surface X. Let $D \in \text{Div}(X)$. If $\alpha_{D,p}(f_p) \neq 0$ then p is a pole of f or p is in the support of D.

Therefore $\{p \in X \mid \alpha_{D,p}(f_p) \neq 0\}$ is a finite subset of X. This allows us to define a complex linear map.

$$\alpha_D : \mathcal{M}_X(X) \to \mathcal{T}[D] := \bigoplus_{p \in X} \mathcal{T}[D]_p, \quad f \mapsto \sum_{p \in X} \alpha_{D,p}(f_p)p.$$

Then $\operatorname{Ker}(\alpha_D) = L(D)$. We define $H^1(D)$ to be the cokernel of α_D . Theorem: $H^1(D)$ is finite dimensional.

5. The Riemann-Roch Theorem (First Form): Let D be a divisor on an algebraic curve X. Then

$$\dim L(D) - \dim H^{1}(D) = \deg D + 1 - \dim H^{1}(0).$$

Note that the above equation can be rewritten as

$$\dim L(D) - \dim H^{1}(D) - \deg D = \dim L(0) - \dim H^{1}(0) - \deg(0).$$

It suffices to show that the left hand side is a constant independent of $D \in \text{Div}(X)$.

References for this lecture are the following sections in Miranda's book: Chapter IX Section 1, "Presheaves", "Examples of Presheaves", "The Sheaf Axiom", Problem IX.11; Chapter VI Section 2, "Definition of Laurent Tail Divisors", "Mittag-Leffler Problems adn $H^1(D)$ "; Chapter VI Section 3, "The Riemann-Roch Theorem I".

Lecture 26 (Wednesday, April 27)

- 1. Proof of Riemann-Roch Theorem (First Form).
- 2. Residue map: Let X be a compact Riemann surface, and let D be a divisor on X.
 - (1) Given $p \in X$, define $\operatorname{Res}_p : (\mathcal{M}_X^{(1)})_p \to \mathbb{C}$.
 - (2) Given $p \in X$ and $\omega_p \in (\mathcal{M}_X^{(1)})_p$, define $\operatorname{Res}_{\omega_p} : (\mathcal{M}_X)_p \to \mathbb{C}$ by $\operatorname{Res}_{\omega_p}(f_p) = \operatorname{Res}_p(f_p\omega_p)$. If

$$\omega_p \in \Omega^1_X[-D]_p = \{\omega_p \in (\mathcal{M}^{(1)}_X)_p \mid \operatorname{ord}_p(\omega) \ge D(p)\}$$

and

 $f_p \in \mathcal{O}_X[D]_p = \{ f_p \in (\mathcal{M}_X)_p \mid \operatorname{ord}_p(f) \ge -D(p) \},\$

then $f_p \omega_p \in (\Omega^1_X)_p \subset \text{Ker}(\text{Res}_p)$. So if $\omega_p \in \Omega^1_X[-D]_p$ then Res_{ω_p} descends to a complex linear functional

$$\operatorname{Res}_{\omega_p} : \mathcal{T}[D]_p = (\mathcal{M}_X)_p / \mathcal{O}_X[D]_p \to \mathbb{C}.$$

(3) Given $\omega \in \Omega^1_X[-D](X) = L^{(1)}(-D)$, define $\operatorname{Res}_\omega : \mathcal{T}[D] \to \mathbb{C}$ by

$$\operatorname{Res}_{\omega}(\sum_{p \in X} r_p p) = \sum_{p \in X} \operatorname{Res}_{\omega_p} r_p = \sum_{p \in X} \operatorname{Res}_p(r_p \omega_p),$$

where $r_p \in \mathcal{T}[D]_p$.

Lemma: If ω is a meromorphic 1-form on a compact Riemann surface X then $\sum_{p \in X} \operatorname{Res}_p(\omega_p) = 0$. Therefore if $f \in \mathcal{M}_X(X)$ and $\omega \in L^{(1)}(-D)$ then $\operatorname{Res}_{\omega} \circ \alpha_D(f) = \sum_{p \in X} \operatorname{Res}_p(f_p\omega_p) = 0$. Therefore $\operatorname{Res}_{\omega}$ descends to a linear functional

$$\operatorname{Res}_{\omega} : H^1(D) = \mathcal{T}[D]/\operatorname{Im}(\alpha_D) \to \mathbb{C}.$$

- (4) There is a complex linear map Res : $L^{(1)}(D) \to H^1(D)^*$ given by $\omega \mapsto \operatorname{Res}_{\omega}$.
- 3. Serre Duality: Let D be a divisor on an algebraic curve X. Then Res : $L^{(1)}(D) \rightarrow H^1(D)^*$ is a linear isomorphism. Derivation of Riemann-Roch Theorem (Second Form) from Riemann-Roch Theorem (First Form) and Serre Duality.

The reference for this lecture is Chapter VI Section 3 of Miranda's book.

Lecture 27 (Monday, May 2)

Proof of the Serre Duality.

The reference for this lecture is the following section of Miranda's book: Chapter VI, Section 3, "Serre duality".