Assignment 11

Due Monday, May 2, 2011

- (1) Prove that any smooth projective plane curve is an algebraic curve.
- (2) Let D = -2p, where p is a point in \mathbb{P}^1 , and let $\alpha_D : \mathcal{M}(\mathbb{P}^1) \to \mathcal{T}[D](\mathbb{P}^1)$ be defined in Miranda's book. Let z_p be the local coordinate on \mathbb{P}^1 at p, so that $z_p^k \cdot p \in \mathcal{T}[D](\mathbb{P}^1)$ for $k \leq 1$. Prove that $z_p^k \cdot p$ is in the image of α_D iff $k \leq 0$.
- (3) Consider a commutative diagram:

where the rows are short exact sequence of abelian groups, and α, β, γ are surjective group homomorphisms. Show that there is a short exact sequence of abelian groups

$$0 \to \operatorname{Ker}(\alpha) \to \operatorname{Ker}(\beta) \to \operatorname{Ker}(\gamma) \to 0.$$

(4) Let ω be a meromorphic 1-form defined on a Riemann surface X. Suppose that $\phi_1 : U_1 \to V_1$ and $\phi_2 \to U_2 \to V_2$ are two complex charts on X, such that $\phi_1(p) = \phi_2(p) = 0$ for some $p \in U_1 \cap U_2$. Suppose that $k = \operatorname{ord}_p(\omega) < 0$, and

$$\omega_{\phi_1} = \left(\sum_{n=k}^{\infty} a_n z^n\right) dz,$$
$$\omega_{\phi_2} = \left(\sum_{n=k}^{\infty} b_n w^n\right) dw,$$

where z is the coordinate on V_1 and w is the coordinate on V_2 . Show that $a_{-1} = b_{-1}$.