Assignment 9

Due Monday, April 18, 2011

- (1) Let X be a Riemann surface. Prove the following statements:
 - (a) If $F: X \to \mathbb{P}^1$ is a nonconstant holomorphic map, then $F^*(q_1) \sim F^*(q_2)$ for any $q_1, q_2 \in \mathbb{P}^1$.
 - (b) Suppose that E_1, E_2 are divisors on X such that (i) $E_1 \ge 0$, $E_2 \ge 0$, (ii) the supports of E_1 and E_2 are nonempty and disjoint, (iii) $E_1 \sim E_2$. Then for any two distinct points $q_1, q_2 \in \mathbb{P}^1$, there exists a holomorphic map $F: X \to \mathbb{P}^1$ such that $F^*(q_1) = E_1$ and $F^*(q_2) = E_2$.
- (2) Let $X = \{ [x: y: z] \in \mathbb{P}^2 \mid F(x, y, z) = 0 \}$ be a smooth projective curve, where $F \in \mathbb{C}[x, y, z]$ is a homogeneous polynomial of degree $d \ge 2$. We assume that $p_0 = [0:1:0] \in X$. (a) Show that $\frac{\partial F}{\partial x}(0,1,0)$ and $\frac{\partial F}{\partial z}(0,1,0)$ are not both zero. (b) Define $\pi: X \to \mathbb{P}^1$ by

$$\pi([x:y:z]) = \begin{cases} [x:z], & \text{if } [x:y:z] \in X - \{p_0\}, \\ [\frac{\partial F}{\partial z}(0,1,0): -\frac{\partial F}{\partial x}(0,1,0)], & \text{if } [x:y:z] = [0:1:0]. \end{cases}$$

Show that π is a nonconstant holomorphic map.

(c) Show that for any $[a:c] \in \mathbb{P}^1$,

$$\pi^*([a:c]) = \operatorname{div}(cx - az) - p_0.$$

What is the degree of π ?

- (d) Show that R_π = div(^{∂F}/_{∂y}) 2p₀.
 (e) Compute the genus g(X) of X by applying the Hurwitz's formula to π .
- (3) Let X be a compact Riemann surface of genus 4. Show that Xis not isomorphic to any smooth projective plane curve.