Assignment 7

Due Monday, April 4, 2011

- (1) Suppose that ω is a nonzero holomorphic 1-form on a compact Riemann surface X of genus 1. Show that ω has no zeros, and that any holomorphic 1-form on X is a constant multiple of ω .
- (2) Let $X = \{ [x:y:z] \in \mathbb{P}^2 \mid F(x,y,z) = 0 \}$ be a smooth projection. tive curve, where F(x, y, z) is a homogeneous polynomial. Let f(u, v) = F(u, v, 1) define the associated smooth affine plane curve. (We assume that f(u, v) is not a constant function of u, v.)
 - (a) Show that du and dv define meromorphic 1-forms on all of X, as do r(u, v)du and r(u, v)dv for any rational function $r(u,v) = \frac{g(u,v)}{h(u,v)}$, where $g,h \in \mathbb{C}[u,v]$ and h is not in the ideal generated by f(u, v).

 - (b) Show that $\frac{\partial f}{\partial u}du = -\frac{\partial f}{\partial v}dv$ as meromorphic 1-forms on X. (c) Suppose that F is of degree $d \ge 3$, and that $p(u, v) \in$ $\mathbb{C}[u, v]$ is a polynomial of degree at most d-3. Show that

$$\omega = \frac{p(u, v)du}{\frac{\partial f}{\partial v}(u, v)}$$

defines a holomorphic 1-form on the compact Riemann surface X.

(3) Let g = 2 and $X_1 = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x^5 - x\}$ in Assignment 6 (3), so that X is a compact Riemann surface of genus 2. Write your answers to (b) and (c) in the form

 $m_1(x_1, y_1) + \cdots + m_n(x_n, y_n) + m\infty, \quad m_1, \dots, m_n, m \in \mathbb{Z}.$

- (a) Show that $X \setminus X_1$ consists of a single point. We call this point ∞ , so that $X = X_1 \cup \{\infty\}$.
- (b) Note that x and y are meromorphic functions on X. Compute the principal divisors $\operatorname{div}(x)$, $\operatorname{div}(y)$.
- (c) We have shown in class that $y^{-1}dx$ is a holomorphic 1-form on X with no zeros in X_1 . Compute the canonical divisor $\operatorname{div}(y^{-1}dx).$
- (4) Let f be a nonzero meromorphic function on a Riemann surface X. Show that for any $p \in X$, $\operatorname{ord}_p(df) = \operatorname{ord}_p(f - f(p)) - 1$.