Assignment 4

Due Monday, February 28, 2011

- (1) Suppose that $f : X \to Y \subset \mathbb{C}^2$ is a map from a Riemann surface X to an irreducible nonsingular affine plane curve Y. Prove that f is a holomorphic map to Y if and only if f is a holomorphic map to \mathbb{C}^2 .
- (2) Suppose that $f: X \to Y \subset \mathbb{P}^2$ is a map from a Riemann surface X to a nonsingular projective plane curve Y. Prove that f is a holomorphic map to Y if and only if f is a holomorphic map to \mathbb{P}^2 .
- (3) Let $f_0(z, w), f_1(z, w), f_2(z, w) \in \mathbb{C}[z, w]$ be homogeneous polynomials of the same degree, such that

$$\{(z,w) \in \mathbb{C}^2 \mid f_0(z,w) = f_1(z,w) = f_2(z,w) = 0\} = \{(0,0)\}.$$

Show that the map $F : \mathbb{P}^1 \to \mathbb{P}^2$ defined by

$$F([z:w]) = [f_0(z,w): f_1(z,w): f_2(z,w)]$$

is well-defined and holomoprhic.

- (4) Recall that a lattice $L \subset \mathbb{C}$ is an additive subgroup generated (over \mathbb{Z}) by two complex numbers ω_1 and ω_2 which are linearly independent over \mathbb{R} . Thus $L = \{m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z}\}.$
 - (a) Suppose that $L \subset L'$ are two lattices in \mathbb{C} . Show that the natural map $\mathbb{C}/L \to \mathbb{C}/L'$ is holomorphic, and is biholomorphic if and only if L = L'.
 - (b) Let L be a lattice in \mathbb{C} and let α be a nonzero complex number. Show that αL is a lattice in \mathbb{C} and that the map $\phi : \mathbb{C}/L \to \mathbb{C}/(\alpha L)$ sending z + L to $(\alpha z) + (\alpha L)$ is a well-defined biholomorphic map.
 - (c) Show that every torus \mathbb{C}/L is isomorphic to a torus which has the form $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$, where τ is a complex number with strictly positive imaginary part.