Assignment 2

Due Monday, February 7, 2011

- (1) Prove that the quotient topology on $\mathbb{P}^n = (\mathbb{C}^{n+1} \{0\})/\mathbb{C}^*$ (defined in class) is Hausdorff.
- (2) An *n*-dimensional complex torus is a group of the form \mathbb{C}^n/L , where *L* is a subgroup of \mathbb{C}^n generated by 2n vectors which are linearly independent over \mathbb{R} . Prove that an *n*-dimensional complex torus is a compact *n*-dimensional complex manifold.
- (3) For which values of $\lambda \in \mathbb{C}$ are the following projective plane curves smooth? Find the singular points when they exist.
 - (a) $y^2 z = x(x-z)(x-\lambda z)$. (b) $x^3 + y^3 + z^3 + 3\lambda xyz = 0$.
- (4) Show that the line in \mathbb{P}^2 through the points [0:1:1] and [t:0:1] meets the projective plane curve X defined by

$$x^2 + y^2 - z^2 = 0$$

in the two points [0:1:1] and $[2t:t^2-1:t^2+1]$. Show that that there is a homeomorphism from the line defined by y = 0to X given by

$$[t, 0, 1] \mapsto [2t, t^2 - 1, t^2 + 1]$$

and

$$[1,0,0] \mapsto [0,1,1].$$