Gromov–Witten Invariants

\(X = \text{smooth projective variety} \) or compact Kähler manifold

\(\overline{M}_{g,m}(X,d) = \text{moduli stack of genus } g, m\text{-pointed stable maps} \)

to \(X \) \& degree \(d \) \(\in \mathbb{Z}_{\geq 0} \) \(\in H_2(X, \mathbb{Z}) \)

\(\left[\overline{M}_{g,m}(X,d) \right]^{vir} \in H_{2((1-g)\dim X + \sum d_c(T_x) + 3g-3+m)} \left(\overline{M}_{g,m}(X,d), \mathbb{Q} \right) \)

\(\sim \text{virtual fundamental class} \)

\(\psi_i = c_i(L_i) \in H^2(\overline{M}_{g,m}(X,d), \mathbb{Q}), \quad L_i \bigg|_{(C, p_1, \ldots, p_m) \mapsto X} := T^*_{p_i} C \)

\(\sim \text{descendant classes} \)

\begin{align*}
\text{Genus } g \text{ descendant potential:} \\
F_{g,X}(t_0, t_1, \ldots) := \sum_{m,d} \frac{Q^d}{m!} \int_{[\overline{M}_{g,m}(X,d)]^{vir}} \prod_{i=1}^{\infty} (\sum_{k=0}^{\infty} t_i^{g-1} \psi_i^k) \\
\text{where } ev_i : \overline{M}_{g,m}(X,d) \to X \quad \text{ev}_i(C, p_1, \ldots, p_m) \mapsto X = f(p_i) \quad t_0, t_1, \ldots \in H^*(X, \mathbb{Q}) \quad Q^d \text{ = element in (a completion of the) group ring of } H_2(X, \mathbb{Z}) \\
\end{align*}

Total descendant potential

\(D_X = \exp \left(\sum_{g \geq 0} \frac{\bar{g}^{-1} g^2}{g} F_g \right) \)
Virasoro constraints

Basis: \(\{ \gamma_a \} \subset H^*(X, \mathbb{C}) \) such that

- \(\gamma_0 = 1 \in H^0(X, \mathbb{C}) \)
- \(\gamma_a \) is homogeneous w.r.t. the Hodge decomposition
 \(\gamma_a \in H^{P_a, \bar{q}_a}(X) \subset H^*(X, \mathbb{C}) \) for some \(P_a, \bar{q}_a \)

Coordinates: \(t_K = \sum_a t_K^a \gamma_a \)

Operators: \(\rho = c_i(T_X) \cup -: H^*(X) \)

\(\rho_a^b = \text{matrix elements of } \rho \text{ w.r.t. } \{ \gamma_a \} \)

\(\sum_b \rho_a^b \gamma_b = \rho(\gamma_a) = c_i(T_X) \cup \gamma_a \)

\(M = \text{diagonal matrix in the basis } \{ \gamma_a \} \)

with entries \(\mu_a = P_a - \frac{\text{dim}X}{2} \)

(Hodge grading operator)

Notation: \([x]_i^k = e_{k+1-i}(x, x+1, \ldots, x+k) \)

\(e_k = k^{th} \text{ elementary symmetric function of its arguments} \)

\((\text{so } \sum_{i=0}^{k+1} s^i [x]_i^k = (s+x)(s+x+1) \cdots (s+x+k)) \)
Virasoro differential operators: \(K \geq -1 \)

\[
L_K = \sum_{i=0}^{k+1} \left(\frac{\hbar}{2} \sum_{m=i-K}^{-1} (-1)^m [M_a + m + \frac{1}{2}]^k_i (\rho^i)_{ab} \frac{\partial}{\partial t_a^m} \frac{\partial}{\partial t_b^{m+k-i}} \right) \\
- \left[\frac{3-dimX}{2} \right]^k_i (\rho^i)_{0} b \frac{\partial}{\partial t_{k-i+1}} \\
+ \sum_{m=0}^{\infty} \left[M_a + m + \frac{1}{2} \right]^k_i (\rho^i)_{a} c_m \frac{\partial}{\partial t_{m+k-i}} \\
+ \frac{1}{2\hbar} (\rho^{k+1})_{ab} t_a^b + \delta_{k,0} \left((3-dimX) c_{dimX}(T_X) - 2 c_{c_{dimX}}(T_X) \right)
\]

Virasoro Conjecture (Eguchi-Hori-Xiong, S. Katz)

\(L_K D_X = 0 \) for \(K \geq -1 \)

Remarks

1. \(L_{-1} D_X = 0 \) is always true; it is equivalent to the string equation.

2. \(L_0 D_X = 0 \), also known as Hori's equation, is always true. It follows from:
 - (a) dimension constraint
 - (b) divisor equation
 - (c) dilaton equation.
3. Let satisfy the following commutation relation:

\[[L_k, L_l] = (k-l) L_{k+l} \]

This is the commutation relation for the algebra of polynomial vector fields on the line, whose central extension is the Virasoro algebra.

The proof of the commutation relation is a formal calculation. There is a geometric aspect: matching the constants in \([L_1, L_{-1}] = 2L_0\) yields

\[
\text{Str} \left(\mu^2 \right) = \frac{1}{12} \int_{X} \left(\dim X \cdot C_{\text{top}}(X) + 2c_1(X) C_{\text{top}, -1}(X) \right),
\]

which can be proven by Hirzebruch–Riemann–Roch (Libgober–Wood).

Givental's formulation

Loop Space: \(\mathcal{H} := H^*(X)(\mathbb{C}[z^{-1}]) \sim \text{Laurent series in } z^{-1} \) with coefficients in \(H^*(X) \)

\[\Omega = \text{symplectic form on } \mathcal{H} \]

\[\Omega(f, g) = \text{Res}_{z=0} (f(-z), g(z)) \, dz \]

\(\Omega \) is the Poincaré pairing on \(X \)

Lagrangian polarizations: \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \cong T^* \mathcal{H}_+ \)
where $\mathcal{H}_+ = H^*(X)[z^2]$ \hspace{2cm} \mathcal{H}_- = z^{-1}H^*(X)[z^{-1}]$.

Darboux coordinates: $\{ p_k^a, q_k^b \} \subseteq \mathcal{H}$

$$p(z) = \sum_{k \geq 0} p_k^a z^{-k-1} + \sum_{l \geq 0} q_l^b z^l \in \mathcal{H}$$

Convention: g^d_X and F_X are viewed as functions on \mathcal{H}.

$$s(z) = t_0 + t_1 z + t_2 z^2 + \ldots$$

hence they are functions on \mathcal{H}_+

via the dilaton shift $\tilde{s}(z) = s(z) - 1z$.

The cone: $L_x = \{ p = d_q F_X^0 \} \subseteq \mathcal{H}$

is an overruled Lagrangian cone w/ vertex at origin in \mathcal{H}.

The "overruled" means that each tangent space T of L_x is tangent to L_x exactly along zT.

Genus 0:

$L_1 = z^{-1}: \mathcal{H} \rightarrow \mathcal{H}$, $L_0 = \frac{2}{z^2} + \frac{1}{2} + M + \frac{P}{z}$.

$L_1 = L_0 \circ L_0$, $L_2 = L_0 \circ L_0 \circ L_0$, \ldots, $L_k = L_0(2L_0)^k : \mathcal{H} \rightarrow \mathcal{H}$.

They satisfy $[L_m, L_n] = (n-m) L_{m+n}$ b/c $[L_0, L_1] = -L_1$.
Thm (X. Liu - G. Tian) Vector fields defined by l_m, $m \geq 1$ are all tangent to L_x.

Proof: Let $T = T_x L_x$. Then $l_0 f \in T$. So $z l_0 f \in z T C L_x$.
So $l_0 z l_0 f \in T$. So $z l_0 z l_0 f \in z T C L_x$, so $l_0 z l_0 z l_0 f \in T$, etc.

Higher genus: Differential operators can be obtained from l_k as follows. Write the quadratic Hamiltonian $f \mapsto \frac{1}{2} \Omega(l_k f, f)$ in Darboux coordinates $\{ p^a, q^b \}$ and obtain a differential operator \hat{l}_k by the following quantization rule:

$\hat{g}^a_{mn} = \frac{g^a_{mn}}{\hbar}, \quad \hat{g}^a_{m} \hat{p}^b_{n} = g^a_{mn} \frac{\partial}{\partial q^b_{m}}, \quad \hat{p}^a_{m} \hat{p}^b_{n} = \hbar \frac{\partial}{\partial q^a_{m}} \frac{\partial}{\partial q^b_{n}}$.

Note: a choice of ordering is made here.

Then $L_k := \hat{l}_k + c_k$, w/ $c_{k=0} = 0, -c_0 = \frac{\lambda (x)}{16} + \text{str} (\mu \mu^*)$ commutes as $[L_m, L_n] = (n-m) L_{mn}$.

Note: The L_k here is the negative of the L_k written down before.

Virasoro conjecture reads: $L_k D_x = 0$, $k \geq -1$.
Proven cases

1. $X = \text{point}$ (Witten, Kontsevich)
2. $X = \text{toric manifold}$ (Givental, Iritani)
3. $X = \text{complete flag manifold of type } A$ (Joe-Kim)
4. $X = \text{Grassmannian}$ (Bertram-Ciocan-Fontanine-Kim)
5. $X = \text{compact Kähler manifold w/ (generic) semisimple } \mathbb{Q}H^*$ (Teleman)
6. $X = \text{non-singular curve}$ (Okounkov-Pandharipande)

2), 3), 4), 5) are based on an approach due to Givental.

Givental’s approach

An element $M: \mathfrak{g}_{(k,2)}$ of the twisted loop group (also known as the Givental group) yields a differential operator $\hat{M} := \exp(\ln M)$ which act on formal functions such as total descendant potentials.

Proposition (loop group covariance) Suppose D' and $D'' = \hat{M}D'$ both satisfy grading constraints $L_0'D' = 0$, $L_0''D'' = 0$ for suitable grading operators L_0', L_0''. Suppose M respects the grading in the sense that $L_0'' = ML_0'M^{-1}$. Then D' satisfies Virasoro constraints if and only if D'' satisfies Virasoro constraints.
Semi simple case: The Givental - Teleman classification of semi simple CohFT implies that for target spaces X w/ (generic) semisimple quantum cohomology rings, we have the following formula:

$$D_x = \hat{S}^{-1} \hat{R} \otimes \dim H^*(x)$$

Some scalar factors are omitted.

S_x is defined explicitly in terms of genus 0 Gromov-Witten invariants. R is uniquely obtained from quantum differential eqn and grading condition for X.

Both S_x and R respect gradings, so loop group covariance and Witten-Kontsevich theorem imply Virasoro constraints for X.

Toric bundles:

$X = \mathbb{C}^N/K$: smooth projective toric manifold.

$K = (S^1)^K < (S^1)^N$

B = compact Kähler manifold / smooth projective variety C

$L_1, \ldots, L_N \to B$: line bundles.

Replacing the fibers of $L_1 \oplus \ldots \oplus L_N \to B$ by X yields a toric bundle $E \to B$.
\(T = (\mathbb{C}^\times)^N \) acts on \(E \). The \(T \)-fixed locus \(E^T \) consists of \(n \) copies of \(B \), which are sections of \(E \to B \).

\((n = \text{rank } H^*(X))\)

The following results are joint work w/ T. Coates and A. Givental

Theorem (Coates - Givental - T.) \(\hat{D}_E = \hat{M} \hat{D}^\otimes \) \(\otimes n \) for a certain grading respecting loop group element \(M \).

Loop group covariance then implies

Corollary Virasoro constraints hold for \(E \) if and only if they hold for \(B \).

For example, Virasoro constraints hold for \(\mathbb{P}^1 \)-bundles over curves (namely, ruled surfaces).

How to prove the Theorem

Descendant/Ancestor correspondence For any smooth projective variety \(Y \), we can consider the total ancestor potential:

\[
A_Y(\tau; t) = \exp \left(\sum_{g=0}^{\infty} \tau^{g-1} \overline{F}_g(\tau; t) \right),
\]

where \(\overline{F}_g \) is the genus \(g \) ancestor potential:

\[
\overline{F}_g(\tau; t) = \sum_{d \in H_2(Y)} \sum_{m \geq 0} \sum_{n \geq 0} \frac{\tau^d}{m! n!} \int \left[\overline{\text{vir}} \right] \prod_{i=m+1}^{m+n} (\sum_{k=0}^{\infty} e_{i+k \circ}(t) \overline{v}_i^k) \prod_{i=m+1}^{m+n} e_{i+k \circ} \cdot c_i
\]
where
\[\tau \in H^*(\Sigma) \]
and
\[t^t = t_0 + t_1 z + t_2 z^2 + \ldots \in H^*(\Sigma)[z] \]

\[\Phi_i = c_t^* \psi_i \], where \(c_t : \overline{M}_{g, m+n}(Y, d) \rightarrow \overline{M}_{g, m+n} \rightarrow \overline{M}_{g, m} \)

A relation between descendant and ancestor invariants, due to Kontsevich-Manin, can be formulated as follows:

\[D_Y = e^{F_Y(t)} \sum_{i} \Phi_i A_{\psi_i}(\tau; t) \]

Here \(S_Y \) is the operator defined by

\[(a, S_Y b) = (a, b) + \sum_{k \geq 2} \sum_{m,d} \frac{1}{k!} \sum_{m_1, \ldots, m_k} \int \left(\prod_{i=1}^{m+k} (e_i^* a) \right) \left(\prod_{i=1}^{m+k} (e_i^* b) \right) \gamma_{m+k}^{m+k} \]

By dimension constraints of Gromov-Witten invariants, \(S_Y \) respects grading.

Localization: Because of descendant/ancestor correspondence, we can study \(A_{\psi_i}(\tau; t) \) instead of \(D_E \). We compute \(A_{\psi_i} \) by virtual localization w.r.t. the \(T \)-action on \(E \).

The outcome is the following:
$A_E(\tau; t) = \bigcap_{\alpha, t} A_{\beta}^{\alpha, tw}$

Some comments:

1. Contributions from maps to the fixed component E^x assemble to $A_{\beta}^{\alpha, tw}$

2. node-smoothing terms in virtual normal bundles contain descendant classes. Replacing them by ancestor classes requires some care.

3. Contributions from maps to 1-dimensional T-orbits of E can be described by the action of $R(\tau)$. $R(\tau)$ arises by studying S_E using localization:

 $S_E(\tau, z) = R(\tau, z) \left(\bigoplus_{\alpha, t} S_{\alpha, tw}^{\text{def}} \right)$

Non-equivariant limit $A_{\beta}^{\alpha, tw}$ can be related to D_B by applying (twisted) descendant/ancestor correspondence and quantum Riemann-Roch theorem. Thus we have the following formula in T-equivariant Gromov-Witten theory:

$A^E_E(\tau) = \widehat{R}(\tau) \widehat{S}_{\text{block}}(\tau) \prod_{\text{block}}^{-1} \bigoplus_{\text{def}} D_B$

Some scalar factors are omitted from quantum Riemann-Roch.
We need a formula relating A_E and $\Pi_{def}^D_B$ in non-equivariant Gromov-Witten theory of E. Therefore we want to show that the expression $R(\tau)S_{block}(\tau)\Gamma_{block}^{-1}$ has non-equivariant limit.

The point is that $R(\tau)S_{block}\Gamma_{block}^{-1}$ is a solution to the T-equivariant quantum differential equation of E.

J. Brown's work provides a fundamental solution to quantum differential equation of E using oscillating integrals and Gromov-Witten invariants of B.

We show that $R(\tau)S_{block}\Gamma_{block}^{-1}$ can be obtained from stationary phase asymptotics of these oscillating integrals.

Non-equivariant limit of this oscillating integral description can be seen to exist.

Finally, the non-equivariant limit of the oscillating integral description can be shown to be grading-respecting.