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3d NV = 4 theory

G: complex reductive group; N: G-representation
In physics, the pair (G, T*N) defines a 3d /' = 4 supersymmetric
gauge theory.

@ The theory admits two interesting components of moduli
space of vacua: Higgs branch and Coulomb branch.

@ The theory is parameterized by two families of parameters: F/
parameters and mass parameters.
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3d NV = 4 Higgs branch

The Higgs branch is the holomorphic symplectic quotient:

X = p710)//0G,
where i T*N — g* is the moment map, and 6 € char(G) is a
stability condition.
When @ is generic, i.e. £~1(0)* = x~1(0)%, X is smooth.

Usually, there is a flavor symmetry T acting on N, commuting with
G. Equivariant parameters in K7(pt) are the mass parameters.
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3d NV = 2 Higgs branch

The pair (G, N) (instead of T*N) gives a 3d A/ = 2 theory.
Its Higgs branch is the GIT quotient

Y := N//oG.
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Example (G = C*, N = C"*1)

G acts on N by weights (1,---,1), and on T*N by
(ooa il —il oo —1)
e Higgs branch: T*P"
p: T*C™ — Cis u(x, y) = X - y. Choice 6 > 0 implies
X #0.
+1

o flavor symmetry T = (C*)"!, K7 (pt) = Clai’?,- - syl

Another torus C; scales the cotangent fiber.

e 3d NV =2 Higgs branch: P"
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Enumerative geometry: quasimaps and vertex function

Definition (Ciocan-Fontanine-Kim—Maulik)

@ A quasimap from P! to the Higgs branch X = 11=1(0)//4G is
a map to the stacky quotient

f:Pl— X =[u"10)/G]
which maps generically into the stable locus X.

@ Alternatively, it consists of a principal G-bundle P over P
together with a section s of the bundle P x¢ T*N, which
satisfies the moment map equation u(s) = 0, and takes values
generically in the stable locus p~1(0)5.

@ Quasimaps to 3d A/ = 2 Higgs branch Y = N//yG are similar.
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QM(X): open substack where oo € P! is not a base point.

eVoo : QMY(X) = X, f = f(00).
evo : QMS(X) — X = [1~1(0)/G].

Let (C’; scales P!, q := ToP! ¢ K(C;(Pt)-

Definition (Ciocan-Fontanine—Kim, A. Okounkov)

Descendent vertex function

V(T(s))(Q) = Z QB eVoo*(@\vir'eVS 7_(5)) € KTXC;IIX(C; (X)/oc[[Q]]a
B

(K-theoretic big /-function, for 3d N' = 2 Higgs branch Y)

7(s) € Krxc; (X) = KexTxc; (pt); Q: Kahler parameters;

loc: pass to fraction field of KTx(C;x(C;(Pt)-
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Quantum g-difference module

Descendent vertex functions

(InS,In Q)

VEE(Q) = e e VEN(Q),  7(s) € K (%)

form a quantum g-difference module of rank rk K(X).

Q% v(T()(Q) = VT (Q).

q¥Q% Q4 = g Q9, x € char(G), d € cochar(G),

SX: tautological line bundle associated with sX (image under
Kirwan surjection KTX(C;fL(%) — KTXC;(X))-



Background: enumerative geometry
0000000080

Bethe algebra / quantum K-ring

@ g — 1 limit of quantum g-difference module gives the Bethe
algebra / quantum K-ring.

(analogous to Givental's quantum K-theory)

o This is a deformation of the usual K-ring K7xc;(X) over
(C[[QEfF(X)]]_

@ It can be defined in terms of certain 3-point functions
counting relative quasimaps.
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Physics

o Vertex functions: partition functions on St X g D; holomorphic
blocks; vortex partition function

@ Desendents: line operators

@ Bethe algebra/quantum K-ring: Wilson loop algebra; chiral
algebra

@ Operators ry in quantized Coulomb branch: monopole
operators
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© Coulomb branch and quasimaps
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BFN construction

K =C((z)), O =C][[z]], D =SpecO, D* = SpecKk.
o Affine Grassmannian

Gr¢ = {(P,9)| P: G-bundle over D, ¢ : P|p« = D* x G}/ ~
= Gx/Go

@ Grg admits a Gp-action from the left.

@ There is a convolution product m : Grg x Grg — Gr¢, defined
by composing the trivializations.
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BFN construction

@ Moduli of triples
T :={(P,¢,s) | (P,¢) € Grg, s € H(D, Np)}

R :={(P,p,s) €T | (s

where Nop := P x ¢ N is the associated bundle.

p~) extend over D},

e 7 is a (co-rank) vector bundle over Grg, and hence smooth
over Grg.

R is not smooth over Grg, unless G abelian.
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Convolution diagram

Intuitively, R “acts” on T from the right.

RXR<—p HRXxR)—=q(p (R xR)) —

AR

TXxR<~L—GexR Gk X6y R

A convolution product can be defined via

m.o(q*) top'
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Theorem (Braverman—Finkelberg—Nakajima)

o GoxC . .
The equivariant K-theory K, o (R) admits a convolution
product %, which is associative, and KGXC;(pt)—Iinear in the first
variable. It is commutative when g — 1.

Definition (BFN)

@ The algebra A(G,N) = KOGONC;(R) is defined as the

quantized K-theoretic Coulomb branch.

@ Spec KOGO(R) is defined as the classical K-theoretic Coulomb
branch.

The commutative subalgebra chcg(pt) is called the Cartan
subalgebra.
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Abelian case

When G = (C*)k is abelian, there is an explicit presentation.

o Grg =7k = {[z9,d € cochar(G)},
Kexc:(pt) = Clq*!, sX, x € char(G)].

o Let ry be the structure sheaf of R over [29].
o A(G,N) is generated by ry and sX over C[q™1].
o rysX = q odsxry.

o There is a grading A = @D yecochar(c) A, where
A® = Kgxc; (pt), A? = Koy (pt) - ra.

@ One can add flavor symmetry T = (C*)", if dim N = n.



BFN construction of Coulomb branch

Example (G = C*, N = C"*1)

o Grg = C((2))/Cllz]l* = {[z7] | d € Z}.

o Convolution product [z%] * [z%2] = [z%1T ],

o T =|lylz] x N[[zl/Cl[z]]".

o R =4[z x (N[[z]] N 29 N[[]]/C[[]]*.

e Convolution product.
Fibers for d > 0, Ry = [29] x 29 N([[z]], R—_q = [z79] x N[[Z]].
Apply convolution and intersection, ~ [2°] x z¢ N[[z]].
Compare with Ro = [2°] x N[[Z]].
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Example (G = C*, N = C"*1)

o Quantized Coulomb branch: generated by s, ry, r_1, such
that r g = rj‘él for d >0, rgs = g 9sry, and

n+1
r—g g = H(l—qa,-s)‘--(l—qda,-s), dZO
i=1

Kexcz(pt) = C[s*, ¢*].

@ r_q4 - rq is essentially computing the K-theoretic Euler class of
R over [z9].

@ Classical Coulomb branch:
SpecClatt, st ry, r1]/(r-1 - — [ (1 — ass)).

Deformation of A,-singularity C?/Z,1 (singular when some
a;'s are equal).
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Motivation

A. Braverman’s work.

@ There is a g-action on the intersection cohomology of moduli
spaces of (Drinfeld's) quasimaps into G/B.

@ The resulting representation is a Verma module of g.
e J-function of G/B can be expressed as Whittaker function.
@ Whittaker function ~» quantum Toda system.

@ There's also a K-theoretic version.
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Motivation from physics

Bullimore-Dimofte-Gaiotto—Hilburn—Kim ('16), “Vortices and
Vermas":

@ monopole operators (quantized (homological) Coulomb
branch) acts on the homology of the vortex moduli space
(quasimaps), with target space N//yG;

(3d V' = 2 Higgs branch)

@ the resulting representation is a Verma module of the
quantized Coulomb branch;

@ generating function of quasimap counting into N//yG can be
expressed as generalized characters of the Verma module;

@ quantum differential equation can be obtained.
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Quasimaps to 3d N = 2 Higgs branch

Example (G = C*, N =C"™, 3d N = 2)

e 3d N = 2 Higgs branch: N//¢p~oG = P".

e A quasimap f from P! to P" is (L, s), where L is a line bundle
on P!, and s is a section of L#("t1) such that s # 0
generically on P*.

@ Moduli space of quasimaps of degree d is
QM(P", d) = PHO(P!, O(d)®("+1).

@ At a point f, its tangent space is the deformation space of
quasimaps

H()(]P)l7 O(d)@(n-‘rl)) o HO(]P;17 O)

No obstruction, since H}(O(d)) = 0 always as d > 0.
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Action on quasimaps

Example (G = C*, N = C"*1)

e Apply Cj-action. 7% =| |,[z9] x N

@ If we restrict to stable locus N° and d > 0, these are the
Cg-equivariant quasimaps.

@ ry acts by “changing the quasimap locally at 0 by degree d".
® Pyso K(QMy(P™)) is a “Verma module” of

A= @Ad = @ KGX(C(’;XT(pt) g

deZ dezZ
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Action on quasimaps

Example (G = C*, N =C"!, 3d N = 2)

@ The 3d N = 2 /-function is

1 d
Z [1771(1 - gaiS) -+ (1 — q7a;S) ¢

d>0

S: tautological line bundle on P (image of s under the
Kirwan surjection);

@ The denominator comes from K-theoretic Euler class of the
deformation space, which resembles RHS of r_g4 - ry.
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@ Now: quantized Coulomb branch acts on K-theory of 3d
N = 2 Higgs branch.

@ Question: why 3d A/ = 27

@ The Coulomb branch comes from a 3d N' = 4 theory. We
may expect it acts on the K-theory of the original 3d A/ = 4
Higgs branch.

@ For moduli spaces: same.

For vertex functions/I-functions: different.
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Quasimaps into 3d N = 4 Higgs branch

Example (G = C*, N = C™, 3d N = 4 theory)
o 3d NV = 4 Higgs branch: ;=1(0)//¢=0G = T*P".

@ Quasimaps: same as 3d A/ = 2 theory (for d # 0)!
Moduli space is still QMy( T*P") = PHO(P!, O(d)®("+1).

@ However, in enumerative geometry we count virtually. The
deformation-obstruction theory is now (for d > 0)

H'(]P’l, O(d)EB(nJrl) @ hil(’)(—d)@('wl)) . H'(]P’l, O0® hflo)

i.e. deformation HO(P, O(d)®(+1)) — HO(PL, O & h~10),
obstruction HY (P!, i~ 1O(—d)®("*t1).
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Quasimaps into 3d N = 4 Higgs branch

Example (G = C*, N = C"1, 3d N = 4 theory)

The vertex function is now (after some extra modification)

n+1 _
(- gt 1) ﬁ —ha;S)---(1 - hq?'a;S) o
d>0 (1-qa;S) - (1-q7aS) '

@ Question: how does the numerator (i.e. obstruction part)
emerge from the Coulomb branch?

@ ldea: use the same moduli space of triples R;
introduce nontrivial obstruction theory, and apply virtual
intersection in convolution product.
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© Virtual Coulomb branch
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Recall: Gysin pullback and intersection theory

Given a regular embedding i : X < Y, there is a Gysin
pullback i' : K(Y) — K(X).

I'[Oy] = [Ox].
i = A*(Ny y)-
Given a smooth variety X, the intersection product is defined

via the Gysin pullback of the diagonal embedding
A: X = XxX.
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Virtual Gysin pullback

e Introduce obstruction theories Ey = Qx @ hQ2x[1], and Ey
similarly.

© The complex E? = Nx,y[1] ® AN /Y[2] is a relative
obstruction theory of the morphism i/, which form a compatible
triple with Eg, E},, but not perfect (it lies in [-2, —1]).

.|
i

@ Define the virtual Gysin pullback as i\!,ir =
A*(=tNx/y)
o Vlro‘{/lr = OVlr

@ This is beyond the usual virtual pullback [C. Manolache][F.
Qu].
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Virtual convolution product

Recall the diagram in [BFN]:

RxR<——p L (RxR) ——>q(p (R x R)) ——R

| | | |

TXR<———GexR——————>GeXgob R——————>T

N R |

TXGI’GXN@HG)CXGI’GXN@HG)CXGO(GrgXNo)#Gr(;XNK

The map p factorizes as

/
A
TXGrngoéGKXN@XGrGXNO%GKXGrGXNO

where p’ is smooth and A is a regular embedding.
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Virtual convolution product

The virtual convolution product is defined by the following steps.

@ For the 3rd row of the diagram, where each space is smooth
over Grg, replace the usual Q by the perfect obstruction
theory Q @ AQV[1] (all relative over Grg).

@ Replace smooth pullback (p’)*, g* by the usual virtual
pullback [C. Manolache] [F. Qu].

@ Replace the Gysin pullback A' by the virtual Gysin pullback.
Some localization of coefficients is needed.
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Virtual Coulomb branch

Theorem (Z. '21)

The virtual convolution product is associative and Kc.;x(c;(pt)—linear
in the first variable. It is commutative when q — 1.

Definition

The K-theoretic quantized virtual Coulomb branch is defined as
GXCrxCixT . . . .
Ko e (R), with the virtual convolution product (with some

modification).

When G is abelian, there exists explicit presentation of the
generators and relations.
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Example (G = C*, N = C"*1)

o Quantized virtual Coulomb branch: generated by s*1, ri, r_q,
such that ryqy = ril for d > 0, rgs = g 9srg, and

n+1 d
e _ 1/23-1/2\—d (1—gqas)---(1—q%ajs)
f=d T H( ) (1 — hajs)--- (1 — g9 Lha;s)

i=1
d >0, Kexcz(pt) = Cls™, g*1].

o ry is the virtual structure sheaf of R over [z9]. The relation
r_q - rq is essentially computing the virtual tangent bundle of
K-theoretic Euler class of R over [z7].

o Need to invert 1 — gZha;s.




Verma module, vertex function, g-di
©00000000000

@ Verma module, vertex function, g-difference module



Verma module, vertex function, g-di
0@0000000000

Verma module

G: abelian (Higgs branch X is a hypertoric variety);
pE XT defines a character of the Cartan A%, sX — SX|p.
Eff(p): effective cone of quasimaps into p.

A, =Py, Ag: certain localized version of virtual Coulomb branch.

The Verma module M(p) of A, is generated by Ag for d € Eff(p),
acting on a highest weight vector v:

sX.v=5X,v, A;d-v:O7 d € Eff(p).

Theorem (Z. 21")

A, acts on EBdeEff(p) KTx(C;;x(C;;(QMd(X§ P)°)oc, realizing it as
the Verma module M(p).
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Whittaker function

A Whittaker vector w,(Q) € M(p)[[QY/2Ef(P)]] of A, is defined as

v awp(Q) = QYPwy(Q),  d € Eff(p).

tg4: generators in A9, modified by “polarizations’”.

Proposition (Vertex function = Whittaker function)

VIED(Q)lo = (wo(Q), 7(s)wp(Q))-

(', ): invariant bilinear form on M(p), s.t. t14 are adjoint to each
other.
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Example (G = C*, N = C"t1)

o X=TP" p=pk s Slp, = a, ".

1

Highest weight vector v, sv =a, “v, r_qv =0, d > 0.

Verma module is spanned by ryv, d > 0.
@ Recall (d > 0)

1oveg (1= gais)-(1— qYass)
e, — T 1/2h 1/2\—d ( q
r—d-rg H,:l( q ) (1—has)(1 = qd_lﬁa,'s).

o Whittaker vector wp, (Q) = > ;5 T rv)| Qa2
—d’d)lpk

@ Whittaker fucntion
(g (@), () (Q)) = 2d>o(( Sllox go — y()(Q).

r rd)’Pk
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Quantum g-difference module

G: abelian; A7(G, N)x: certain localized version; d € Eff(X).
Q% V() (Q) = VET9))(Q)
QIVIT)(Q) = VaT(s)-a)(Q).

Theorem (Z. '21)

o g-difference module generated by V1)(Q) is isomorphic to
CHREF ™ ©c AF(G, N)x /(1 ® tar(s)r—g — Q7 ® 7(s))

where d € Eff(X), 7(s) € A%.

@ The Bethe algebra of X can be obtained from the g-difference
module by setting q — 1.

<
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Quantum g-difference module/equation

Example (G = C*, N = C"*1)

Take 7(s) = 1 in the theorem. We can determine the g-difference
equations that V(1)(Q) satisfies as follows.

We have QVD)(Q) = V(n-1)(Q), g% v(Q) = V)(Q),

where (omit constant factor for simplicity)

il (1—as)
- H (1 — g 1ha;s)

We get

n+1 n+1
[1(1 - 2:9%)70(Q) = Q T[ 1 - haig®) V(@)

i=1 i=1
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Nonabelian case

Abelianization: X2 = 1 =1(0)//¢K; K C G: maximal torus.

Vertex function can be written in terms of X2 with extra
descendent coming from roots of G.

Theorem (Z. '21)

o g-difference module generated by all V(T(9)(Q) is
CHRE N @c AF(K, N)Yos joc
(1@ twa7(s)ewa Tl (222 — Q9 @ 7(s))

where d € Eff(X3) N cochar(G)4+, w € W, 7(s) € A%.

@ The Bethe algebra of X can be obtained from the g-difference
module by setting q — 1.

V.
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Application: wall-crossing

Variation of GIT: change stability condition 8, X’ = 1 =1(0)//¢'G.

Restriction to fixed points are changed.

Effective cone is changed: for some reversing d € Eff(X), we have
—d € Eff(X").

Example (G = C*, N = C™1)

00>0 X={(Xy)|X-y=0, X#0}/C* = T*P"
Eff(X) = {d | d > 0}. S|, = a, "

00 <0, X' ={(Xy)|X-y=0, y#0}/C* = T*P"
Eff(X') = {d | d <0}. S|, = i ta .
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Example (Nakajima quiver (v, w) = (2, n))
0 0<0,X={(IJ)]| =0, rkl =2}/GL(2) = T*Gr(2, n)
Eff(X) ={d | d > 0}. Sil, = a,.
0 0'>0, X ={(I,J)| =0, rkd=2}/GL(2) = T*Gr(2, n)
Eff(X’) = {d | d <0}. Sjl, =k 'a!.

o X% = (T*Pr—1)2, same with (X’).
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Under wall-crossing, the virtual Coulomb branch is well-behaved:
for those reversing curve classes d,

/
t:l:d = t:Fd

Example (G = C*, N = C"*1)

oy (1 —gqajs)--- (1 — q%a;s)
cry = T gl/2p—1/2)—d (I1-g
r—dq - rd lel( q ) (1 _ ha,-s)-~-(1 _ qd—lha,-s)
(d > 0) becomes r’ jry =r *-r7} .
_ 1— hajs)--- (1 — g% *ha;s)
ntle_ 1/25-1/2 a(

Hl:l( q ) (1_qai5)“’(1_qdai5)
41— g 'hais) - (1 — g 9hass)

(1—as)---(L—qgl9ass)

, and then

g = T2
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Application: wall-crossing

Observation: relations

qsa —(a,w d
1® twgT(s)t_wg - H w - Q4@ 1(s)

in the quantum g-difference module are invariant under
wall-crossing 6 — 6.

Theorem (Z. '21)

The quantum q-difference module (also the Bethe algebra) is
invariant under wall-crossing.
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Thank you!
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