Series Expansion and the Potts Model

umk2102

September 2023

1 2.3-Series Expansion

We're gonna solve the Ising Model again but through a new method - series expansion. Let's start with the equation for the partition function:

$$
Z_{N}(T)=\sum_{\{\sigma\}} e^{-\beta \mathcal{H}}=\sum_{\{\sigma\}} \prod_{i=1}^{n} e^{\mathcal{J} \sigma_{i} \sigma_{i+1}}
$$

Recall

$$
\cosh x=e^{x}+e^{-x}
$$

and

$$
\sinh x=e^{x}-e^{-x}
$$

Using this, we can construct the following identity:

$$
e^{\mathcal{J} \sigma_{i} \sigma_{i+1}}=\cosh \mathcal{J}+\sigma_{i} \sigma_{i+1} \sinh \mathcal{J}=\cosh \mathcal{J}\left(1+\sigma_{i} \sigma_{i+1} \tanh \mathcal{J}\right)
$$

This lets us rewrite the partition function as

$$
Z_{N}(T)=\cosh ^{N} \mathcal{J} \sum_{\{\sigma\}} \prod_{i=1}^{n} 1+\sigma_{i} \sigma_{i+1} v
$$

for $v=\tanh \mathcal{J} . v$ is always less than 1 (except at $\mathrm{T}=0$). This creates a polynomial. In the case of 3 objects:

$$
\begin{gathered}
\prod_{i=1}^{3} 1+\sigma_{i} \sigma_{i+1} v=\left(1+\sigma_{1} \sigma_{2} v\right)\left(1+\sigma_{2} \sigma_{3} v\right)\left(1+\sigma_{3} \sigma_{1} v\right)= \\
1+v\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)+v^{2}\left(\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{3}+\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}+\sigma_{2} \sigma_{3} \sigma_{3} \sigma_{1}\right)+v^{3}\left(\sigma_{1} \sigma_{2}\right) \sigma_{2} \sigma_{3} \sigma_{3} \sigma_{1}
\end{gathered}
$$

To build a graph from this example, connect the points with lines indicating spin. Here's a picture:

Since v appears in the polynomial with each $\sigma_{i} \sigma_{i+1}$, each graph of order v^{l} will have l lines. The picture helps visualize this. For the partition function, we need to sum over the two spins $+1,-1$. Because of the way the model is made, the following holds:

$$
\sum_{\sigma_{j}=-1}^{1} \sigma_{j}^{l}=2 \text { for } l \text { even and } 0 \text { for } l \text { odd }
$$

so odd graphs add nothing. Hence, for 2^{N} initial graphs, only v^{0} and v^{n} have nonzero results. Namely, the partition function is

$$
Z_{N}(T)=\cosh ^{N} \mathcal{J}\left(2^{N}+2^{N} v^{N}\right)=2^{N}\left(\cosh ^{N} \mathcal{J}+\sinh ^{N} \mathcal{J}\right)
$$

If there are no boundary conditions, we must look at the open graph - v^{0}. Here we get the same partition as with the recursive method.

$$
Z_{N}(T)=2^{N} \cosh N-1 \mathcal{J}
$$

For any lattice with spin interaction exclusively for neighbor particles, the partition function is the following:

$$
Z_{N}(T)=2^{N}(\cosh \mathcal{J})^{P} \sum_{l=0}^{P} h(l) v^{l}
$$

P is the number of lines in the lattice and $h(l)$ is the number of graphs possible assuming each vertex has even order.

2 2.5 - The Potts Model

The Potts Model is an expansion of the Ising Model with each particle σ_{i} now taking one of q different values, $\sigma_{i}=1,2, \ldots, q$. Adjacent spins have interaction energy given by $-\mathcal{F} \delta\left(\sigma_{i} \sigma_{j}\right)$, with

$$
\delta\left(\sigma_{i} \sigma_{j}\right)=1 \text { if } \sigma_{i}=\sigma_{j} \text { and } 0 \text { otherwise }
$$

The Hamiltonian then is

$$
\mathcal{H}=-\mathcal{F} \sum_{<i, j>} \delta\left(\sigma_{i} \sigma_{j}\right)
$$

When $q=2$, this descends into the Ising Model as we take +1 and -1 as values and use the following identity: $\delta\left(\sigma_{i} \sigma_{j}\right)=1 / 2\left(1+\sigma_{i} \sigma_{j}\right)$. On a lattice of N particles, we get the following partition function:

$$
Z_{N}=\sum_{\{\sigma\}} \exp \left[\mathcal{J} \sum_{<i, j>} \delta\left(\sigma_{i} \sigma_{j}\right)\right]
$$

Let's compute it with the two methods we know.

2.1 Recursive method

Let's assume we have a chain of N spins with free boundary conditions at the ends. If we add another spin, we get the following partition function:

$$
Z_{N+1}=\left(\sum_{\left\{\sigma_{N+1}=1\right\}}^{q} e^{\mathcal{J} \delta\left(\sigma_{N}, \sigma_{N}+1\right)}\right) Z_{N}
$$

The following identity helps us simplify this formula.

$$
e^{x \delta(a, b)}=1+\left(e^{x}-1\right) \delta(a, b)
$$

Using it, we get

$$
\begin{aligned}
\sum_{\left\{\sigma_{N+1}=1\right\}}^{q} e^{\mathcal{J} \delta\left(\sigma_{N}, \sigma_{N}+1\right)} & =\sum_{\left\{\sigma_{N+1}=1\right\}}^{q} 1+\left(e^{\mathcal{J}}-1\right) \delta\left(\sigma_{N}, \sigma_{N}+1\right) \\
& =q+\left(e^{\mathcal{J}}-1\right)
\end{aligned}
$$

Hence, the recursive equation is

$$
Z_{N+1}=\left(q+\left(e^{\mathcal{J}}-1\right)\right) Z_{N}
$$

If we plug in $Z_{1}=q$, we get the result

$$
Z_{N}=q\left(q-1+e^{\mathcal{J}}\right)^{N-1}
$$

2.2 Transfer matrix method

Like before, assume periodic boundary conditions $\left(\sigma_{N+1}=\sigma_{N}\right.$. The partition function is the same as previous:

$$
Z_{N}=\operatorname{Tr} V^{N}
$$

V is a $q x q$ matrix analogous to the prior but with elements

$$
<\sigma|V| \sigma^{\prime}>=\exp \left[\mathcal{J} \delta\left(\sigma, \sigma^{\prime}\right)\right]
$$

Thus, V has diagonal elements $e^{\mathcal{J}}$ and all others 1.
$\mathrm{V}=\left(\begin{array}{cccccc}e^{\mathcal{J}} & 1 & 1 & \ldots & 1 & 1 \\ 1 & e^{\mathcal{J}} & 1 & \ldots & 1 & 1 \\ 1 & 1 & e^{\mathcal{J}} & \ldots & 1 & 1 \\ \ldots & \ldots & \ldots & e^{\mathcal{J}} & \ldots & 1 \\ 1 & 1 & \ldots & \ldots & e^{\mathcal{J}} & 1 \\ 1 & 1 & \ldots & \ldots & 1 & e^{\mathcal{J}}\end{array}\right)$
Now to find the trace, we need to get the eigenvalues of the transfer matrix. These are solutions to $\mathcal{D}=\|V-\lambda 1\|=0$ Call $x=e^{\mathcal{J}}-\lambda$. We can find the determinant by subtracting/adding rows and columns, since this will not affect
it.

$$
\mathrm{D}=\left(\begin{array}{cccccc}
x & 1 & 1 & \ldots & 1 & 1 \\
1 & x & 1 & \ldots & 1 & 1 \\
1 & 1 & x & \ldots & 1 & 1 \\
\ldots & \ldots & \ldots & x & \ldots & 1 \\
1 & 1 & \ldots & \ldots & x & 1 \\
1 & 1 & \ldots & \ldots & 1 & x
\end{array}\right)
$$

If we subtract the second column from the first, the third from the second, etc, we get
$\mathrm{D}=\left(\begin{array}{cccccc}x-1 & 0 & 0 & \ldots & 0 & 1 \\ 1-x & x-1 & 0 & \ldots & 0 & 1 \\ 0 & 1-x & x-1 & \ldots & 0 & 1 \\ \ldots & \ldots & \ldots & x-1 & \ldots & 1 \\ 0 & 0 & \ldots & \ldots & x-1 & 1 \\ 0 & 0 & \ldots & \ldots & 1-x & x\end{array}\right)$
Now if we add the first row to the second, and the second to the third, etc, we get
$\mathrm{D}=\left(\begin{array}{cccccc}x-1 & 0 & 0 & \ldots & 0 & 1 \\ 0 & x-1 & 0 & \ldots & 0 & 2 \\ 0 & 0 & x-1 & \cdots & 0 & 3 \\ \cdots & \ldots & \cdots & x-1 & \cdots & 4 \\ 0 & 0 & \cdots & \cdots & x-1 & q-1 \\ 0 & 0 & \cdots & \cdots & 1-x & x+q-1\end{array}\right)$
Thus, we get the determinant to be

$$
\|\mathcal{V}-\lambda 1\|=\left(e^{\mathcal{J}}-1-\lambda\right)^{q-1}\left(e^{\mathcal{J}}+q-1-\lambda\right)=0
$$

Which makes the roots

$$
\lambda_{+}=e^{\mathcal{J}}+q-1 \text { and } \lambda_{-}=e^{\mathcal{J}}-1
$$

Thus, we can calculate the trace of the matrix and solve the partition function:

$$
Z_{N}=\operatorname{Tr} V^{N}=\lambda_{+}^{N}+(q-1) \lambda_{-}^{N}
$$

2.3 Series Expansion

Let's look at the series expansion for a lattice, with

$$
v=e^{\mathcal{J}}-1
$$

Using the identity for $e^{x \delta(a, b)}$, we get the partition function to be

$$
\sum_{\{\sigma\}} \prod_{<i j>}\left[1+v \delta\left(\sigma_{i}, \sigma_{i+1}\right)\right]
$$

If we take E to be the amount of connections in the graph \mathcal{L}, the partition sum has a product of E factors, 1 or $v \delta\left(\sigma_{i}, \sigma_{i+1}\right)$. Thus the product has 2^{E}
terms and can be represented by connecting the sites i and j when $v \delta\left(\sigma_{i}, \sigma_{i+1}\right)$ is present. This creates a bijection from the lattice to all the graphs. Taking an example graph \mathcal{G}, with l links and \mathcal{C} components, we get a v^{l} in the sum accompanied by $\delta\left(\sigma, \sigma^{\prime}\right)$ giving all the spins attached the same value. Hence, this graph contributes $q^{\mathcal{C}} v^{l}$ to the partition, and the whole function can be taken as the sum on the lattice:

$$
Z_{N}=\sum_{\mathcal{C}} q^{\mathcal{C}} v^{l}
$$

