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Motivation
The algebraic Bethe ansatz is great because of its universality: it is only based on the RLL relation and
without any changes it can be applied to a wide class of models. In this way, different physical models
are different representations of the same algebra. Bethe [1931] is where we get the (coordinate) Bethe
ansatz; the method is for constructing the eigenfunctions of the quantum Hamiltonian of a Heisenberg spin
chain. In the late 70s and early 80s, Faddeev et al [1979a], Faddeev et al [1979b], and Sklyanin [1982]
developed the Quantum Inverse Scattering method. This framework showed that many quantum models
solved by the Bethe ansatz that were completely different physically were the same algebraically. Thus, many
important properties of physical systems can be established at the level of algebra, without using concrete
representations. Explained briefly, the algebraic Bethe ansatz is a method of working with a special operator
algebra describing a rather wide class of quantum systems.

0 Definitions
Lax matrix:

Lan(u) =

(
u+ iSzn iS−n
iS+
n u− iSzn

)
Monodromy matrix:

Ma(u) = La1(u) . . . LaL(u) =

(
A(u) B(u)
C(u) D(u)

)
Transfer matrix:

T (u) = traMa(u) = A(u) +D(u)

1 The algebra
The algebra between A,B,C,D is a consequence of RLL. It’s given by the RMM relation, which we proved
last week. To extract the algebra, we look at the monodromy matrix: the central object of the algebraic
Bethe ansatz.

M̃a(u) = Ma(u)⊗ Ib =


A(u) 0 B(u) 0

0 A(u) 0 B(u)
C(u) 0 D(u) 0

0 C(u) 0 D(u)


a,b

and

M̃b(v) = Ia ⊗Mb(v) =


A(v) B(v) 0 0
C(v) D(v) 0 0

0 0 A(v) B(v)
0 0 C(v) D(v)


a,b

.
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These operators commute. We plug into the RMM relation and get

B(u)B(v) = B(v)B(u),

A(u)B(v) = f(v − u)B(v)A(u) + g(u− v)B(u)A(v),

D(u)B(v) = f(u− v)B(v)D(u) + g(v − u)B(u)D(v),

where f(u) = u+i
u and g(u) = i

u . h, which comes up later, is defined as h(u) = u−i
u .

2 From transfer matrix to Hamiltonian
Two properties to exploit:

1. The Hamiltonian of the Heisenberg spin chain HXXX is hidden inside the transfer matrix T (u). Pre-
cisely,

HXXX ∼
d

du
log T (u)

∣∣∣∣
u=i/2

.

2. The eigenstate of the Hamiltonian HXXX (and T (u)) can be constructed by

B(u1) . . . B(uN )| ↑ . . . ↑〉

where B is one of the components in the monodromy matrix.

2.1 Permutation operators
Consider the following operator acting on C2 ⊗ C2:

Pab =
1

2

(
Ia ⊗ Ib +

∑
α

σαa ⊗ σαb ), α = x, y, z.

Alternatively,

Pab =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


ab

.

For any |x〉a, |y〉b,
Pab(|x〉a ⊗ |y〉b) = |y〉a ⊗ |x〉b.

Both HXXX and the Lax operator can be written in terms of these operators. Recall

HXXX =

L∑
n=1

~Sn · ~Sn+1 =
1

4

L∑
n=1

~σn · ~σn+1.

Proceeding from the definition of Pab,

~σn · ~σn+1 = 2Pn,n+1 − In,n+1 =⇒ HXXX =
1

2

L∑
n=1

Pn,n+1 −
L

4
.

In order to write down the Hamiltonian, set Vn = C2. Thus, the Lax operator in terms of Pab is given by

Lan(u) = (u− i

2
)Ia,n + iPa,n.

This implies pretty useful observations:

• Lan( i2 ) = iPa,n.

• d
duLan(u) = Ia,n
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2.2 The shift operator
The shift operator U is given by

U = i−LT (
i

2
) = i−LtraMa(

i

2
)

= traPa,1 . . . Pa,L = (traPa,L)PL,L−1 . . . P1,2

= PL,L−1 . . . P1,2.

This is made easier since traPa,n = In.

2.3 The Hamiltonian
Let’s expand T (u) around u = i

2 . First,

d

du
Ma(u)

∣∣∣∣
u= i

2

= iL−1
L∑
n=1

Pa,1 . . . ˆPa,n . . . Pa,L,

where P̂a,n means the permuation operator is omitted. To obtain the derivative with respect to the transfer
matrix, take the trace in the auxiliary space:

d

du
T (u)

∣∣∣∣
u= i

2

=
d

du
(tra(La1(u) . . . LaL(u)))

∣∣∣∣
u= i

2

= tra
(
d

du
La1(u) . . . LaL(u)

)∣∣∣∣
u= i

2

= tra
( L∑
n=1

La,1 . . . ˆLa,n . . . La,L

)∣∣∣∣
u= i

2

=

L∑
k=1

iL−1tra(Pa,1 . . . ˆPa,n . . . Pa,L)

= iL−1
L∑
k=1

PL,L−1 . . . Pn−1,n+1 . . . P1,2.

From here, consider T (u)
−1. Recall that T ( i2 ) = iLPL,L−1 . . . P2,1:

T−1(
i

2
) = (−i)LP1,2 . . . PL,L−1(

d

du
T (u)

)
T (u)−1

∣∣∣∣
u= i

2

=
1

i

L∑
n=1

Pn,n+1.

The left hand side can be written as the logarithm derivative(
d

du
T (u)

)
T (u)−1 =

d

du
log T (u).

Plug this into the expression for the Hamiltonian:

HXXX =
i

2

d

du
log T (u)

∣∣∣∣
u= i

2

−L
4
.

3 Construction of eigenvectors
Let’s turn to the eigenstates: they can be constructed by acting B-operators on the pseudovaccum | ↑L〉.
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3.1 Pseudovacuum
The pseudovacuum state | ↑L〉 diagonalizes A(u) and D(u) and is anhilated by C(u). Consider Ma(u)| ↑L〉:

Ma(u)| ↑L〉 = La1(u) . . . LaL(u)| ↑L〉
= (La1(u)| ↑〉1)⊗ . . .⊗ (LaL(u)| ↑〉L).

On each site,

Lan(u)| ↑〉n =

(
u+ iSzn iS−n
iS+
n u− iSzn

)
| ↑〉n =

(
u+ i

2 iS−n
0 u− i

2

)
| ↑〉n.

So at each site, we have an upper triangular matrix: the multiplication of upper triangular matrices is
still an upper triangular matrix. Thus,

Ma(u)| ↑L〉 =

(
u+ i

2 iS−1
0 u− i

2

)
. . .

(
u+ i

2 iS−L
0 u− i

2

)
| ↑L〉

=

(
(u+ i

2 )L ?
0 (u− i

2 )L

)
| ↑L〉

Compare this to

Ma(u)| ↑L〉 =

(
A(u) B(u)
C(u) D(u)

)
| ↑L〉.

This gives us

A(u)| ↑L〉 = a(u)| ↑L〉, D(u)| ↑L〉 = d(u)| ↑L〉, C(u)| ↑L〉 = 0,

where a(u) = (u− i
2 )
L and d(u) = (u+ i

2 )
L.

Clearly, | ↑L〉 is an eigenvector of A(u) and D(u); C(u) is eliminated as prophesied. Such a state is also
called a highest weight state or reference state. The existence of such a state is non-trivial and is a necessary
condition that the Bethe ansatz works. Some integrable models don’t have this (XYZ, Toda, etc.); these
models need to use other methods, like Sklyanin’s separation of variables.

3.2 The N-magnon state
We conveniently left B(u) out of the picture. B(u) acting on | ↑L〉 is pretty complicated. Each B(u) on a
given state flips down a spin. The flipped spin can be located at any site of the spin chain which need to be
summed over with different weights. Now we’ll show that

|un〉 = B(u1) . . . B(uN )| ↑L〉

is an eigenstate of T (u) if uN satisfies certain conditions.
First let’s see how A(u) and D(u) act on |uN 〉. At N = 1 (the 1-magnon sector), A(u)|u1〉 is pretty

straightforward:

A(u)|u1〉 = A(u)B(u1)| ↑L〉
= (f(u1 − u)B(u1)A(u) + g(u− u1)B(u)A(u1))| ↑L〉
= f(u1 − u)a(u)| ↑L〉+ g(u− u1)a(u1)B(u)| ↑L〉.

. D(u)|u1〉 is almost exactly the same.
Generalizing to N from here yields

A(u)|uN 〉 = A(u)B(u1) . . . B(uN )| ↑L〉

= a(u)

N∏
k=1

f(uk − u)B(u1) . . . B(uN )| ↑L〉+

N∑
k=1

Mk(u|uN )B(u1) . . . B̂(uk) . . . B(uN )B(u)| ↑L〉,
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where B̂(uk) means the operator is omitted. The first term takes the form of an eigenstate and is called the
“wanted term”. The second terms are called “unwanted terms”. The coefficientsMk(u|uN ) can be determined
using the algebra established:

M1(u|uN ) = g(u− u1)a(u1)

N∏
k=2

f(uk − u1).

Since all the B-operators commute, Mk(u|uN ) comes from a substitution of uk in place of u1:

Mj(u|un) = g(u− uj)a(uj)

N∏
k 6=j

f(uk − uj).

For D,

D(u)B(u1) . . . B(uN )|Ω〉 = d(u)

N∏
k=1

f(u− uk)B(u1) . . . B(uN )| ↑L〉

+

N∑
j=1

Nj(u|uN )B(u1) . . . B̂(uk) . . . B(uN )B(u)| ↑L〉

where Nj(u|uN ) = g(uj − u)d(uj)
N∏
k 6=j

f(uj − uk).

g(u− uj) = −g(uj − u), so let’s take the sum of A and D: we get that

(A(u) +D(u))|uN 〉 = τ(u|uN )|un〉

where τ(u|uN ) is the eigenvalue of the transfer matrix:

τ(u|uN ) = a(u)

N∏
j=1

u− uj − i
u− uj

+ d(u)

N∏
j=1

u− uj + i

u− uj
.

The unwated terms cancel out under the condition

a(uj)

N∏
k 6=j

f(uj − uk) = d(uj)

N∏
k 6=j

h(uj − uk), j = 1, . . . , N.

More explicitly, (
uj + i

2

uj − i
2

)L N∏
k 6=j

uj − uk − i
uj − uk + i

= 1, j = 1, . . . , N.

Doesn’t this look familiar?
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