Algebraic Bethe Ansatz and the XXX Spin Chain

Rizwan Kazi

Fall 2023

Motivation

The algebraic Bethe ansatz is great because of its universality: it is only based on the RLL relation and without any changes it can be applied to a wide class of models. In this way, different physical models are different representations of the same algebra. Bethe [1931] is where we get the (coordinate) Bethe ansatz; the method is for constructing the eigenfunctions of the quantum Hamiltonian of a Heisenberg spin chain. In the late 70s and early 80s, Faddeev et al [1979a], Faddeev et al [1979b], and Sklyanin [1982] developed the Quantum Inverse Scattering method. This framework showed that many quantum models solved by the Bethe ansatz that were completely different physically were the same algebraically. Thus, many important properties of physical systems can be established at the level of algebra, without using concrete representations. Explained briefly, the algebraic Bethe ansatz is a method of working with a special operator algebra describing a rather wide class of quantum systems.

0 Definitions

Lax matrix:

$$
L_{a n}(u)=\left(\begin{array}{cc}
u+i S_{n}^{z} & i S_{n}^{-} \\
i S_{n}^{+} & u-i S_{n}^{z}
\end{array}\right)
$$

Monodromy matrix:

$$
M_{a}(u)=L_{a 1}(u) \ldots L_{a L}(u)=\left(\begin{array}{cc}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)
$$

Transfer matrix:

$$
T(u)=\operatorname{tr}_{a} M_{a}(u)=A(u)+D(u)
$$

1 The algebra

The algebra between A, B, C, D is a consequence of RLL. It's given by the RMM relation, which we proved last week. To extract the algebra, we look at the monodromy matrix: the central object of the algebraic Bethe ansatz.

$$
\widetilde{M}_{a}(u)=M_{a}(u) \otimes \mathbb{I}_{b}=\left(\begin{array}{cccc}
A(u) & 0 & B(u) & 0 \\
0 & A(u) & 0 & B(u) \\
C(u) & 0 & D(u) & 0 \\
0 & C(u) & 0 & D(u)
\end{array}\right)_{a, b}
$$

and

$$
\widetilde{M}_{b}(v)=\mathbb{I}_{a} \otimes M_{b}(v)=\left(\begin{array}{cccc}
A(v) & B(v) & 0 & 0 \\
C(v) & D(v) & 0 & 0 \\
0 & 0 & A(v) & B(v) \\
0 & 0 & C(v) & D(v)
\end{array}\right)_{a, b} .
$$

These operators commute. We plug into the RMM relation and get

$$
\begin{gathered}
B(u) B(v)=B(v) B(u) \\
A(u) B(v)=f(v-u) B(v) A(u)+g(u-v) B(u) A(v) \\
D(u) B(v)=f(u-v) B(v) D(u)+g(v-u) B(u) D(v)
\end{gathered}
$$

where $f(u)=\frac{u+i}{u}$ and $g(u)=\frac{i}{u}$. h, which comes up later, is defined as $h(u)=\frac{u-i}{u}$.

2 From transfer matrix to Hamiltonian

Two properties to exploit:

1. The Hamiltonian of the Heisenberg spin chain $H_{X X X}$ is hidden inside the transfer matrix $T(u)$. Precisely,

$$
\left.H_{X X X} \sim \frac{d}{d u} \log T(u)\right|_{u=i / 2}
$$

2. The eigenstate of the Hamiltonian $H_{X X X}$ (and $T(u)$) can be constructed by

$$
B\left(u_{1}\right) \ldots B\left(u_{N}\right)|\uparrow \ldots \uparrow\rangle
$$

where B is one of the components in the monodromy matrix.

2.1 Permutation operators

Consider the following operator acting on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$:

$$
P_{a b}=\frac{1}{2}\left(I_{a} \otimes I_{b}+\sum_{\alpha} \sigma_{a}^{\alpha} \otimes \sigma_{b}^{\alpha}\right), \quad \alpha=x, y, z
$$

Alternatively,

$$
P_{a b}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{a b}
$$

For any $|x\rangle_{a},|y\rangle_{b}$,

$$
P_{a b}\left(|x\rangle_{a} \otimes|y\rangle_{b}\right)=|y\rangle_{a} \otimes|x\rangle_{b}
$$

Both $H_{X X X}$ and the Lax operator can be written in terms of these operators. Recall

$$
H_{X X X}=\sum_{n=1}^{L} \vec{S}_{n} \cdot \vec{S}_{n+1}=\frac{1}{4} \sum_{n=1}^{L} \vec{\sigma}_{n} \cdot \vec{\sigma}_{n+1}
$$

Proceeding from the definition of $P_{a b}$,

$$
\vec{\sigma}_{n} \cdot \vec{\sigma}_{n+1}=2 P_{n, n+1}-I_{n, n+1} \Longrightarrow H_{X X X}=\frac{1}{2} \sum_{n=1}^{L} P_{n, n+1}-\frac{L}{4} .
$$

In order to write down the Hamiltonian, set $V_{n}=\mathbb{C}^{2}$. Thus, the Lax operator in terms of $P_{a b}$ is given by

$$
L_{a n}(u)=\left(u-\frac{i}{2}\right) I_{a, n}+i P_{a, n}
$$

This implies pretty useful observations:

- $L_{a n}\left(\frac{i}{2}\right)=i P_{a, n}$.
- $\frac{d}{d u} L_{a n}(u)=I_{a, n}$

2.2 The shift operator

The shift operator U is given by

$$
\begin{aligned}
U & =i^{-L} T\left(\frac{i}{2}\right)=i^{-L} \operatorname{tr}_{a} M_{a}\left(\frac{i}{2}\right) \\
& =\operatorname{tr}_{a} P_{a, 1} \ldots P_{a, L}=\left(\operatorname{tr}_{a} P_{a, L}\right) P_{L, L-1} \ldots P_{1,2} \\
& =P_{L, L-1} \ldots P_{1,2}
\end{aligned}
$$

This is made easier since $\operatorname{tr}_{a} P_{a, n}=I_{n}$.

2.3 The Hamiltonian

Let's expand $T(u)$ around $u=\frac{i}{2}$. First,

$$
\left.\frac{d}{d u} M_{a}(u)\right|_{u=\frac{i}{2}}=i^{L-1} \sum_{n=1}^{L} P_{a, 1} \ldots \hat{P_{a, n} \ldots P_{a, L}}
$$

where $\widehat{P}_{a, n}$ means the permuation operator is omitted. To obtain the derivative with respect to the transfer matrix, take the trace in the auxiliary space:

$$
\begin{aligned}
\left.\frac{d}{d u} T(u)\right|_{u=\frac{i}{2}} & =\left.\frac{d}{d u}\left(\operatorname{tr}_{a}\left(L_{a 1}(u) \ldots L_{a L}(u)\right)\right)\right|_{u=\frac{i}{2}} \\
& =\left.\operatorname{tr}_{a}\left(\frac{d}{d u} L_{a 1}(u) \ldots L_{a L}(u)\right)\right|_{u=\frac{i}{2}} \\
& =\left.\operatorname{tr}_{a}\left(\sum_{n=1}^{L} L_{a, 1} \ldots \hat{L_{a, n}} \ldots L_{a, L}\right)\right|_{u=\frac{i}{2}} \\
& =\sum_{k=1}^{L} i^{L-1} \operatorname{tr}_{a}\left(P_{a, 1} \ldots \hat{\left.P_{a, n} \ldots P_{a, L}\right)}\right. \\
& =i^{L-1} \sum_{k=1}^{L} P_{L, L-1} \ldots P_{n-1, n+1} \ldots P_{1,2}
\end{aligned}
$$

From here, consider $T(u)^{-1}$. Recall that $T\left(\frac{i}{2}\right)=i^{L} P_{L, L-1} \ldots P_{2,1}$:

$$
\begin{gathered}
T^{-1}\left(\frac{i}{2}\right)=(-i)^{L} P_{1,2} \ldots P_{L, L-1} \\
\left.\left(\frac{d}{d u} T(u)\right) T(u)^{-1}\right|_{u=\frac{i}{2}}=\frac{1}{i} \sum_{n=1}^{L} P_{n, n+1}
\end{gathered}
$$

The left hand side can be written as the logarithm derivative

$$
\left(\frac{d}{d u} T(u)\right) T(u)^{-1}=\frac{d}{d u} \log T(u)
$$

Plug this into the expression for the Hamiltonian:

$$
H_{X X X}=\left.\frac{i}{2} \frac{d}{d u} \log T(u)\right|_{u=\frac{i}{2}}-\frac{L}{4}
$$

3 Construction of eigenvectors

Let's turn to the eigenstates: they can be constructed by acting B-operators on the pseudovaccum $\left|\uparrow^{L}\right\rangle$.

3.1 Pseudovacuum

The pseudovacuum state $\left|\uparrow^{L}\right\rangle$ diagonalizes $A(u)$ and $D(u)$ and is anhilated by $C(u)$. Consider $M_{a}(u)\left|\uparrow^{L}\right\rangle$:

$$
\begin{aligned}
M_{a}(u)\left|\uparrow^{L}\right\rangle & =L_{a 1}(u) \ldots L_{a L}(u)\left|\uparrow^{L}\right\rangle \\
& =\left(L_{a 1}(u)|\uparrow\rangle_{1}\right) \otimes \ldots \otimes\left(L_{a L}(u)|\uparrow\rangle_{L}\right)
\end{aligned}
$$

On each site,

$$
L_{a n}(u)|\uparrow\rangle_{n}=\left(\begin{array}{cc}
u+i S_{n}^{z} & i S_{n}^{-} \\
i S_{n}^{+} & u-i S_{n}^{z}
\end{array}\right)|\uparrow\rangle_{n}=\left(\begin{array}{cc}
u+\frac{i}{2} & i S_{n}^{-} \\
0 & u-\frac{i}{2}
\end{array}\right)|\uparrow\rangle_{n} .
$$

So at each site, we have an upper triangular matrix: the multiplication of upper triangular matrices is still an upper triangular matrix. Thus,

$$
\begin{aligned}
M_{a}(u)\left|\uparrow^{L}\right\rangle & =\left(\begin{array}{cc}
u+\frac{i}{2} & i S_{1}^{-} \\
0 & u-\frac{i}{2}
\end{array}\right) \ldots\left(\begin{array}{cc}
u+\frac{i}{2} & i S_{L}^{-} \\
0 & u-\frac{i}{2}
\end{array}\right)\left|\uparrow^{L}\right\rangle \\
& =\left(\begin{array}{cc}
\left(u+\frac{i}{2}\right)^{L} & \star \\
0 & \left(u-\frac{i}{2}\right)^{L}
\end{array}\right)\left|\uparrow^{L}\right\rangle
\end{aligned}
$$

Compare this to

$$
M_{a}(u)\left|\uparrow^{L}\right\rangle=\left(\begin{array}{cc}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)\left|\uparrow^{L}\right\rangle
$$

This gives us

$$
A(u)\left|\uparrow^{L}\right\rangle=a(u)\left|\uparrow^{L}\right\rangle, \quad D(u)\left|\uparrow^{L}\right\rangle=d(u)\left|\uparrow^{L}\right\rangle, \quad C(u)\left|\uparrow^{L}\right\rangle=0
$$

where $a(u)=\left(u-\frac{i}{2}\right)^{L}$ and $d(u)=\left(u+\frac{i}{2}\right)^{L}$.
Clearly, $\left|\uparrow^{L}\right\rangle$ is an eigenvector of $A(u)$ and $D(u) ; C(u)$ is eliminated as prophesied. Such a state is also called a highest weight state or reference state. The existence of such a state is non-trivial and is a necessary condition that the Bethe ansatz works. Some integrable models don't have this (XYZ, Toda, etc.); these models need to use other methods, like Sklyanin's separation of variables.

3.2 The N-magnon state

We conveniently left $B(u)$ out of the picture. $B(u)$ acting on $\left|\uparrow^{L}\right\rangle$ is pretty complicated. Each $B(u)$ on a given state flips down a spin. The flipped spin can be located at any site of the spin chain which need to be summed over with different weights. Now we'll show that

$$
\left|\mathbf{u}_{n}\right\rangle=B\left(u_{1}\right) \ldots B\left(u_{N}\right)\left|\uparrow^{L}\right\rangle
$$

is an eigenstate of $T(u)$ if \mathbf{u}_{N} satisfies certain conditions.
First let's see how $A(u)$ and $D(u)$ act on $\left|\mathbf{u}_{N}\right\rangle$. At $N=1$ (the 1-magnon sector), $A(u)\left|\mathbf{u}_{1}\right\rangle$ is pretty straightforward:

$$
\begin{aligned}
A(u)\left|\mathbf{u}_{1}\right\rangle & =A(u) B\left(u_{1}\right)\left|\uparrow^{L}\right\rangle \\
& =\left(f\left(u_{1}-u\right) B\left(u_{1}\right) A(u)+g\left(u-u_{1}\right) B(u) A\left(u_{1}\right)\right)\left|\uparrow^{L}\right\rangle \\
& =f\left(u_{1}-u\right) a(u)\left|\uparrow^{L}\right\rangle+g\left(u-u_{1}\right) a\left(u_{1}\right) B(u)\left|\uparrow^{L}\right\rangle
\end{aligned}
$$

. $D(u)\left|\mathbf{u}_{1}\right\rangle$ is almost exactly the same.
Generalizing to N from here yields

$$
\begin{aligned}
A(u)\left|\mathbf{u}_{N}\right\rangle & =A(u) B\left(u_{1}\right) \ldots B\left(u_{N}\right)\left|\uparrow^{L}\right\rangle \\
& =a(u) \prod_{k=1}^{N} f\left(u_{k}-u\right) B\left(u_{1}\right) \ldots B\left(u_{N}\right)\left|\uparrow^{L}\right\rangle+\sum_{k=1}^{N} M_{k}\left(u \mid \mathbf{u}_{N}\right) B\left(u_{1}\right) \ldots \widehat{B}\left(u_{k}\right) \ldots B\left(u_{N}\right) B(u)\left|\uparrow^{L}\right\rangle
\end{aligned}
$$

where $\widehat{B}\left(u_{k}\right)$ means the operator is omitted. The first term takes the form of an eigenstate and is called the "wanted term". The second terms are called "unwanted terms". The coefficients $M_{k}\left(u \mid \mathbf{u}_{N}\right)$ can be determined using the algebra established:

$$
M_{1}\left(u \mid \mathbf{u}_{N}\right)=g\left(u-u_{1}\right) a\left(u_{1}\right) \prod_{k=2}^{N} f\left(u_{k}-u_{1}\right) .
$$

Since all the B-operators commute, $M_{k}\left(u \mid \mathbf{u}_{N}\right)$ comes from a substitution of u_{k} in place of u_{1} :

$$
M_{j}\left(u \mid \mathbf{u}_{n}\right)=g\left(u-u_{j}\right) a\left(u_{j}\right) \prod_{k \neq j}^{N} f\left(u_{k}-u_{j}\right)
$$

For D,

$$
\begin{aligned}
D(u) B\left(u_{1}\right) \ldots B\left(u_{N}\right)|\Omega\rangle=d(u) \prod_{k=1}^{N} f\left(u-u_{k}\right) B\left(u_{1}\right) & \ldots B\left(u_{N}\right)\left|\uparrow^{L}\right\rangle \\
& +\sum_{j=1}^{N} N_{j}\left(u \mid \mathbf{u}_{N}\right) B\left(u_{1}\right) \ldots \widehat{B}\left(u_{k}\right) \ldots B\left(u_{N}\right) B(u)\left|\uparrow^{L}\right\rangle
\end{aligned}
$$

where $N_{j}\left(u \mid \mathbf{u}_{N}\right)=g\left(u_{j}-u\right) d\left(u_{j}\right) \prod_{k \neq j}^{N} f\left(u_{j}-u_{k}\right)$.
$g\left(u-u_{j}\right)=-g\left(u_{j}-u\right)$, so let's take the sum of A and D : we get that

$$
(A(u)+D(u))\left|\mathbf{u}_{N}\right\rangle=\tau\left(u \mid \mathbf{u}_{N}\right)\left|\mathbf{u}_{n}\right\rangle
$$

where $\tau\left(u \mid \mathbf{u}_{N}\right)$ is the eigenvalue of the transfer matrix:

$$
\tau\left(u \mid \mathbf{u}_{N}\right)=a(u) \prod_{j=1}^{N} \frac{u-u_{j}-i}{u-u_{j}}+d(u) \prod_{j=1}^{N} \frac{u-u_{j}+i}{u-u_{j}}
$$

The unwated terms cancel out under the condition

$$
a\left(u_{j}\right) \prod_{k \neq j}^{N} f\left(u_{j}-u_{k}\right)=d\left(u_{j}\right) \prod_{k \neq j}^{N} h\left(u_{j}-u_{k}\right), \quad j=1, \ldots, N
$$

More explicitly,

$$
\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \prod_{k \neq j}^{N} \frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}=1, \quad j=1, \ldots, N
$$

Doesn't this look familiar?

