$\frac{\text{Def }V(\partial_i,\partial_j)}{=}e^{\int \partial_i \partial_j + \frac{1}{2} \mathcal{B}(\partial_i + \partial_j)}$ Transfer Matrix Transfer matrix Sol to 1D-Ising • periodic boundary conditions $D_i = \delta_{N+i}$ $Z_i = \sum_{j=1}^{2} J_{\sigma_i} \partial_i + 1 + \sum_{j=1}^{2} B_{\sigma_j} \partial_i + 1 + \sum_{j=1}^{2} B_{\sigma_j} \partial_i + 1 + \sum_{j=1}^{2} B_{\sigma_j} \partial_j + \sum_$ Hanittonian H: States -> R (energy) Remark: The dimension of TT = dim of $\underset{=}{\overset{\text{Alg}}{=}} \frac{\sum V(\theta_1, \theta_2) V(\theta_2, \theta_3) \dots V(\theta_M \theta_l)}{1 - 1}$ $\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ - Replace 0, -> 0, 02 -> 6, ... => $Z_N = Z V(\alpha, b) V(b, c) ... V(q, \alpha)$ oreiting Kemark; O(1)-model = 1D-Ising as Consider V = $\begin{pmatrix} V_{11} & V_{11'} \\ V_{1'1} & V_{1'1'} \end{pmatrix}$ 5°=1x1=13=) x1=1

$$\frac{\operatorname{Transfer Matrix 2}}{\operatorname{V2} = \begin{pmatrix} V_{11} & V_{11'} \\ V_{11'} & V_{11'} \end{pmatrix} \begin{pmatrix} V_{11} & V_{11'} \\ V_{11'} & V_{11'} \end{pmatrix} \begin{pmatrix} V_{11} & V_{11'} \\ V_{11'} & V_{11'} \end{pmatrix} \begin{pmatrix} V_{11} & V_{11'} \\ V_{11'} & V_{11'} \end{pmatrix} \begin{pmatrix} V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'} \\ V_{11'} & V_{11'} & V_{11'} & V_{11'} & V_{11'$$

Periodi C Det A nearest neighbor stat mech Series Expansion Monday, September 18, 2023 $\frac{10 \text{ Ising, } B=0; Z_{\mu}(T) = Z \text{ The } B;0;11}{10 \text{ ros} i=1}$ system is a graph G=(V, E) w/a collection of states 283=(0x)xtV w/ H: States -> IR sit. some function $= 2 e^{\int \Theta(\Theta)} = \cosh J \Theta(O) + \sinh J \Theta(O)$ $H(ros) = \overline{\Sigma} F(\overline{o_x}, \overline{o_y})$ Oirtely Cosh J + Oioisinh J -e.g. fhis rigorously defines nearesta $= (ush J (l + \theta i \partial_j tanh J)$ WARNING; Should draw edges of G $=7\mathcal{E}_{V}(T) = \cosh^{N} J \sum_{\substack{1 \\ 105 \\ 1$ as Lashed lines Ex: N=3 of 1D Periodic Ising Key Point; It a:= 1 fill in the line between vertex ; and it! an La ... La Contration

repent =) all ai =) Series Expansion 2 Claim 1: $\sum \theta_{1}^{c_{1}} \cdot \cdot \cdot \cdot \theta_{n}^{c_{n}} = \int 2^{N} i f all ci$ $\sum 10^{c_{1}} \cdot \cdot \cdot \cdot \theta_{n}^{c_{n}} = \int 2^{N} i f all ci$ $0 \leq 1$ $0 \leq 1$ Else, A i s.t. ai = 1 =) aj=0 +j Pt; WLOB if CI=1, then ble on ust 1/2 =) $Z_N(T) = (ush J Z Z L_1...L_N UZa;$ a; craisesS= Z1...on + Z(-1)...on -= D 103 103 I all ci even, but then as dibitily $S = \frac{1}{205} = 2^{N}$ $\stackrel{(1)}{=} \cosh^{2} J \left(2N_{V}N + 2N \right) = 0^{2} \cdot \cdot \cdot 0^{2} \cdot \cdot 0^{$ Claim 2: All ci even C closed polygons Remark's ZN = 1 Z G(P) works closed polygun P on E for any NN-start mech system s.t. Floxing) Pf; Let i s.t. a: \$1 in lines corr to Lat... La as=0 for sci. ble Li=diditl, only Li, Liti contribute a factor of = Ky Brey 1 Freitig VxeV, such as coupling constant 2D-Ising ひいれ、blcのにのいろうひいーー~~しいいい

Let I/c= a (ritical point of ZNZK), Duality in 2D Ising R= a critical point of ZNIR] - If Kxy= K tx,y, then ZN(T)"=" Z (# Pw/ k edges) VK clused PonE critical pt $(k) =) \tilde{K} = k_c$ is a critical point of ZNER) HICKIN 2Kc)Mcco, physics says only one critical pt=) Fc=1(1) Def Phase transition at To(=) 4(To)=00 Goali Wits 2D-Ising has phase transition. (**) <=> sinh2k snh2k=1 Idea; 20-Ising has duality as N-> 00 Let kxy=k ¥x,Y, k= F/T Zh [k] _ Zh [k] (¥) high Sinh2K)M2 [Sinh2k] M/2 \implies sinh $\lambda K_c = 1$ Exer: sinh(ln(1+JZ))= = 7 2 kc = ln(1+vE)where $tanh K = e^{-d\hat{K}}$ (##) $=) T_{c} = \frac{2}{\ln(HJ_{z})} T_{c}$ · high temp = converses as N-200, T-200 · low temp = _____, T-20