Transfer Matrix
Def A stat mech system π is a collection of States $\left\{\theta^{\prime}\right\}=\left(\overrightarrow{\theta_{x}}\right)_{x \in} P, \overrightarrow{\theta_{x}} \in R, P=$ sites with a Hanitonian $H:$ States \rightarrow \& (energy)
Remark; The dimension of $\pi=$ dim of states, nut the vectors

$E x(O(2)-$ model $)$
$\underset{\hat{\sigma}_{\alpha}}{\rightarrow} S^{1}=\left\{x_{1}^{2}+x_{2}^{2}=1 \xi_{\text {ave } 2 D}\right.$
Ex $(0(n)-$ model $)$
$\overrightarrow{\theta_{\alpha}} \in S^{n-1}=\left\{x_{1}^{2}+\cdots+x_{n}^{2}=1\right\}$
Remark; $O(1)-$ model $=(1)-7$ sing as

$$
5^{0}=\left\{x_{1}^{2}=1\right\} \Rightarrow x_{1}= \pm 1
$$

Def $V\left(\theta_{i}, \theta_{j}\right)=e^{J \theta_{i} \theta_{j}+\frac{1}{2} B\left(\theta_{i}+\theta_{j}\right)}$ Transfer matrix Sol to $1 D$-Using - periodic boundary conditions $\sigma_{i}=\sigma_{N+i}$

$$
\begin{aligned}
& z_{N}=\sum_{\{\theta \xi} e^{\sum_{i=1}^{N} \jmath \theta_{i} \theta_{i}+1+\sum_{i=1}^{N} \beta_{i} \theta_{i}} \\
& \text { Alg } \sum V\left(\theta_{1}, \theta_{2}\right) V\left(\theta_{2}, \theta_{3}\right) \quad V\left(\sigma_{1}, \theta_{1}\right) \\
& \text { (1) }\{\theta\} \\
& \stackrel{(1)}{=} \operatorname{Tr} V^{N}, V=1\left(\begin{array}{ll}
e^{J+\beta} & e^{-J} \\
e^{-3} & e^{J-\beta}
\end{array}\right)
\end{aligned}
$$

Q: Why is (1) true?

- Replace $\sigma_{1} \leftrightarrow a ; \theta_{2} \rightarrow b, \ldots \Rightarrow$

$$
z_{N}=\sum_{\alpha \in<+1\}} v(a, b) v(b, c) \ldots v(\alpha, a)
$$

Consider $V=\left(\begin{array}{ll}V_{11} & V_{11} \\ V_{11} & V_{11^{\prime}}\end{array}\right)$

Transfer Matrix 2

$$
\begin{aligned}
& V^{2}=\left(\begin{array}{ll}
V_{11} & V_{11^{\prime}} \\
V_{11} & V_{\left(1^{\prime}\right.}
\end{array}\right)\left(\begin{array}{lll}
V_{11} & V_{11}^{\prime} \\
V_{11} & V_{(1}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{ll}
v_{11} v_{11}+v_{11^{\prime}} v_{1 \prime^{\prime}} & v_{11} v_{11}+\left.v_{11} \prime v_{1 \prime}\right|^{\prime} \\
v_{11}^{\prime} v_{11}+v_{11} v_{11} & v_{1 \prime} v_{11}^{\prime}+v_{1 r^{\prime}} v_{11}^{\prime \prime}
\end{array}\right)
\end{aligned}
$$

$\Rightarrow \operatorname{Tr}\left(v^{2}\right)=\sum V(1, b) V(b, 1)$ b \quad b $V\left(v^{\prime}, \prime^{\prime}\right\}$
$+\sum_{b \in\left\{w^{\prime} \prime\right\}} V\left(I^{\prime}, b\right) V\left(b, 1^{\prime}\right)=\sum V(a, b) V(b, a)$
Lem $\left(V^{N}\right)_{i j}=\sum_{\alpha \in\{l, 1,\}} V_{i b} V_{b c} V_{c d} \ldots V_{\alpha N j}$
pf: Use induction.

$$
\text { Cor } \operatorname{Tr} V^{N}=\sum_{\alpha \in\left\{1,1^{\prime}\right\}} V_{a b} V_{b c} \cdots V_{\alpha_{N}} a
$$

$\Rightarrow(1) Z_{N}=\operatorname{Tr} V^{N}$
Remark; For non-periodic boundary conditions have to specify boundary of $1 D$ - $I \sin \eta, \mathrm{cg}$.

$\Rightarrow z_{N}(1,-1)=\sum_{\{\theta \xi}^{b} V(1, b) V(b, c) \cdots V\left(\alpha_{N-1},-1\right)$
$\stackrel{\text { Lem }}{=}\left(V^{N-1}\right)_{1,-1}$ entry "" $=\left(V^{N}\right)_{12}$ entry
$=\left(\begin{array}{ll}1 & 0\end{array}\right) V_{N-1}^{N-1}\binom{0}{1}=\binom{$ Let }{$P_{D} D^{-1}=V}$ $\left(\begin{array}{ll}1 & 0\end{array}\right) P\binom{\lambda^{N-1}+0}{10 \lambda^{N-1}} p-1\binom{0}{1}$ 交 $\left.\begin{array}{ll}\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\end{array}\right)$ devalues of $V=\sin \phi \cos \phi\left(\lambda_{+}^{N-1}-\lambda_{-}^{K-1}\right) v$

Periodic

(a) $e^{x}=\cosh x+\sinh x$

$$
\Rightarrow e^{J \theta_{i} \theta_{j}}=\cosh J \theta_{i} \theta_{j}+\sinh J \theta_{i} \theta_{j}
$$

$$
\begin{aligned}
& 0 ;<\{1\} \\
& -\frac{\cosh }{\operatorname{cosen}} J+\theta_{i} \theta_{j} \frac{\sinh }{d d} J_{\nu} \\
& \text { - } \cosh J\left(1+\theta_{i} \theta_{j} \tanh h^{\prime \prime} J\right) \\
& \Rightarrow Z_{N}(T)=\cosh ^{N} J \sum_{\left.i \theta^{2} \xi_{i=1}^{N}\left(1+0_{i} \theta_{i+1} V\right), ~\right) ~}^{N} \\
& =\cosh ^{N} J \sum_{\{\theta \xi} \sum_{a_{i}(R, 0,1\}} L_{1}^{a_{1}} L_{2}^{a_{2}} \cdots L_{N}^{a_{N}} V^{\sum d_{i}} \\
& \text { with } 2 \\
& L_{i}^{\prime}=\theta_{i} \theta_{i+1}
\end{aligned}
$$

$=\cosh ^{N} J \sum_{d_{i} \in\{0,1\}} \sum_{2 \theta\}} L_{1}^{a_{1}} L_{2}^{a_{2}} \cdots 4_{N}^{a_{N}} v^{a_{N}}$

Def A nearest neighbor stat mech system is a graph $G=(V, E) w / a$ collection of states $2 \theta \zeta=\left(\overrightarrow{\theta_{x}}\right)_{x \in V}$ w) $H:$ states $\rightarrow \mathbb{R}$ sit. some function

$$
\left.H(\{\theta\})=\sum_{(x, y) \in E} F{ }^{(} \vec{\theta}_{x}, \vec{\theta}_{y}\right)
$$

-erg this rigorously defines neighbor
WARNING: shan does of 6
WARNING; Should draw edges of 6
as dashed line 5
Ex: $N=3$ of 11 Periodic Ising

Key Point; It $a_{i}=1$ fill in the line between vertex i and $i+1, a_{N}$. $l_{1}^{a_{1}} \cdots l_{N} \longrightarrow a_{N} \longrightarrow n_{i} a_{2} \ldots . .$.

Series Expansion 2
$\frac{\text { Claim 1: }}{s=\left\{\sum_{0}\right\} \theta_{1}^{c} \ldots \theta_{n}^{c_{n}}=\left\{\begin{array}{l}2^{N} \\ \text { if all } c_{1} \\ 0 \\ \text { even } \\ \text { else }\end{array}\right.}$ pf: wLob if $c_{1}=1$, then ble $Q_{1} \in\{ \pm 1\}$

$$
S=\sum_{\left\{\theta^{\prime}\right\}} 1^{\prime} \ldots \theta_{n}^{c_{n}}+\sum_{\left\{\theta^{\prime}\right\}}(-1)^{\prime} \ldots \theta_{n}^{C}=0
$$

\Rightarrow all ci even, but then as $\theta_{i} \in\{ \pm 1\}$

$$
s=\sum_{3 \theta \xi} 1=2^{N}
$$

Claim: All ci even \longrightarrow closed polygons pfiletis.t. $a_{i} \neq 1$ in lines corr to $a_{j}=0$ for aci. blase $L_{i} \quad L_{1} a_{1} \ldots L_{N}^{a_{N}^{n}}$ only $L_{i}, L_{i}+1$ contribute a factor of θ_{i+1}. bIc $a_{i}\{0,1\} \Rightarrow a_{i+1}=\mid \leadsto L_{i} c_{i+1} \cdots$
repeat \Rightarrow all $d_{i}=1 \rightarrow$ \qquad
Else, \nexists i sit. $a_{i} \neq 1 \Rightarrow a_{j}=0 \forall j$
\Rightarrow empty polygon

$$
\Rightarrow z_{N}(T)=\cosh ^{N} J \sum_{a_{i} c_{i o 1}} \sum_{i \xi_{0}} L_{1}^{a_{1}} \cdots L_{N}^{a_{N}} v^{Z a_{i}}
$$

$=\cosh ^{N} J \sum_{\text {closed }} \sum_{\{\theta\}_{1}} L_{1}^{a_{1}} \ldots L_{N}^{a_{N}} v^{\sum_{i}}$
$\frac{C 1+c 2}{\overline{C l}} \cosh ^{N} J\left(\sum_{i \theta \zeta} L_{1}^{1} \cdots L_{N}^{1} v^{N}+\sum_{i \theta\}} 1\right)$
$\frac{\mathrm{Cl}}{=} \cosh ^{N} J\left(2^{N} v^{N}+2 N\right)^{\theta_{1}^{2} \cdots \theta_{N}^{2}}$ Remark; $t_{N}{ }^{\prime \prime}=\prime \sum G(P)$ works for any NN-stut mech system sit. $F\left(\overrightarrow{a_{x}}, \overrightarrow{y_{y}}\right)$ $=k_{x y} \vec{\theta}_{x} \vec{\theta}_{y}, \vec{\theta}_{x} \in\{ \pm 1\} \forall x \in V$, such as 20- using

- If $k_{x y}=k \forall x, y$, then

$$
Z_{N}(T)^{\prime \prime}=" \sum_{\text {closed }} P \text { on } E \text { e docs) } v^{k}
$$

Def Phasic transition at $\tau_{0} \Leftrightarrow \hbar_{0}^{\prime}\left(\tau_{0}\right)=\infty$
Goali WTS 2D-Ising has phase transition.
Idea; $2 D-$ using has duality as $N \rightarrow \infty$ Let $k x y=k \forall x, y, k=\sigma x / T$

$$
\begin{aligned}
& \text { Let } k_{x y}=k \forall x, y, k=x / \top \\
& z_{N}[k] \\
& \operatorname{limh}_{\text {temp }}(\sinh 2 k)^{N / 2}=\frac{z_{N}[\tilde{k}]^{(l o w ~ t e m p ~}}{(\sinh 2 \hat{k})^{N / 2}}(*)
\end{aligned}
$$

where $\tanh k=e^{-\alpha \tilde{k}}(k t)$

- high temp $=$ converts as $N \rightarrow \infty, T \rightarrow \infty$
- low temp $=\longrightarrow, 7 \rightarrow 0$

Let $k_{c}=a$ (critical point of $z_{N}[k]$,
$\hat{k}_{c}=a$ (critical point of $z_{\alpha}[\hat{k}]$
$(e)=\vec{k}=K_{c}$ is a critical point of $z_{N}[\hat{k}] b_{c}\left(\sin 2 k_{c}\right) M / c_{\infty} \infty$, physics says only ore critical $p+\Rightarrow \vec{k}_{c}=k_{c}(1)$
$(* *) \Leftrightarrow \sinh 2 \hat{c} \sinh 2 k=1$
(1) $\sinh \alpha K_{c}=1$

Exes: $\sinh (\ln (1+\sqrt{2}))=1$
$\Rightarrow 2 k c=\ln (1+\sqrt{2})$
$\Rightarrow T_{c}=\frac{2}{\ln (1+\sqrt{2})} 7$

