Notes for Math Seminar

Charles Grant Beck

December 2023

1 Models with \mathbf{Z}_{n} Symmetry

We have that the in the \mathbb{Z}_{n} model, spins are planar vectors of unitary length can be identifed by discrete angels θ_{i} with respect to the horizontal axes:

$$
a^{(k)}=\frac{2 \pi k}{n}, k=0,1,2, \ldots n-1
$$

We then have that the hamiltonian for this system is:

$$
\begin{aligned}
\mathcal{H} & =-\mathcal{J} \sum_{<i j>} \vec{S}_{i} \cdot \vec{S}_{j} \\
& =-\mathcal{J} \sum_{<i j>} \cos \left(\theta_{i}-\theta_{j}\right)
\end{aligned}
$$

We have that this system is invariant under the transformation $k \rightarrow k+m$ ($\bmod n)$. For $n=2$, we get the regular Ising Model or the 2 -state Potts model. When $n=3$, we have 3 -state Potts model. When $n \rightarrow \infty$ we have that \mathbb{Z}_{n} becomes equivalent to $O(2)$ model. We have for the 1-D Model:

$$
Z_{n}=\sum_{\theta_{1}=0}^{n-1} \ldots \sum_{\theta_{N}=0}^{n-1} \exp \left(J \sum_{i=0}^{N-1} \cos \left(\frac{2 \pi}{n}\left(\theta_{i}-\theta_{i+1}\right)\right)\right)
$$

For $N=1$, we have that $Z_{N}=n$ (number of possible states). We then find that the rest of the partition function using recursive method:

$$
Z_{N+1}=Z_{N} \sum_{\theta_{N+1}=0}^{n-1} \exp \left(J \cos \left(\frac{2 \pi}{n}\left(\theta_{N}-\theta_{N+1}\right)\right)\right)
$$

We then have that we can say $\mu_{1}(J, n)=\sum_{\theta_{N+1}=0}^{n-1} \exp \left(J \cos \left(\frac{2 \pi}{n}\left(\theta_{N}-\theta_{N+1}\right)\right)\right)$. We have that $Z_{N}=n\left[\mu_{1}(J, n)\right]^{N-1}$. We then have that the correlation function of two spins is:

$$
\begin{aligned}
G(r) & =\left\langle\vec{S}_{i} \cdot \vec{S}_{i+r}\right\rangle \\
& =\left\langle\cos \left(\theta_{i}-\theta_{i+r}\right)\right\rangle
\end{aligned}
$$

We have that:

$$
\left\langle S_{i} \cdot S_{i+r}\right\rangle=Z_{N}^{-1} \sum_{\left\{S_{1}, \ldots S_{N}\right\}} S_{k} \cdot S_{k+r} \exp \left(\sum_{i=0}^{N-1} J S_{i} \cdot S_{i+1}\right)
$$

If we then use the fact that $\sum_{\{S\}} \vec{S} e^{J S \cdot S^{\prime}}=\mu_{2}(J, n) S^{\prime}$, we have that:

$$
\left\langle\vec{S}_{i} \cdot \vec{S}_{i+r}\right\rangle=\left(\frac{\mu_{2}(J, n)}{\mu_{1}(J, n)}\right)^{r}
$$

2 Proof of the Cosecant Identity

We have that:

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =\pi \csc (\pi s) \\
& =\frac{\pi}{\sin (\pi s)}
\end{aligned}
$$

We have that our definition is:

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1}
$$

So we have:

$$
\begin{aligned}
\Gamma\left(\frac{1}{2}\right) & =\Gamma\left(\frac{1}{2}\right)^{2} \\
\Gamma(s) \Gamma(1-s) & =\int_{0}^{\infty} e^{-x} x^{s-1} d x \int_{0}^{\infty} e^{-y} y^{-s-1} d y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-x} x^{s-1} e^{-y} y^{-s} d y d x
\end{aligned}
$$

We do a change of variables $u=\frac{x}{y}$, with $d u=\frac{d x}{y}, d x=y d u$, so that we have that:

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-u y}(u y)^{s-1} e^{-y} y^{-s} d y d x \\
& =\int_{0}^{\infty} u^{s-1} \int_{0}^{\infty} e^{-(u+1) y} d y d u \\
& =\int_{0}^{\infty}\left[u^{s-1}\left[\frac{e^{-(u+1) y}}{u+1}\right]\right]_{0}^{\infty} d u \\
& =\int_{0}^{\infty} \frac{u^{s-1}}{u+1} d u
\end{aligned}
$$

We then have that we can use geometric series to solve this integral:

$$
\begin{aligned}
\frac{1}{1+u} & =\frac{1}{1-(-u)} \\
& =\sum_{n=0}^{\infty}(-u)^{n}
\end{aligned}
$$

Where we have that $u \in[0,1)$. We can then take:

$$
\int_{0}^{\infty} \frac{u^{s-1}}{u+1} d u=\int_{0}^{1} \frac{u^{s-1}}{u+1} d u+\int_{1}^{\infty} \frac{u^{s-1}}{u+1} d u
$$

We make the variable change of the form $u=\frac{1}{v}$, and we have that $d v=-\frac{d u}{u^{2}}$, and we have that $d u=-u^{2} d v$. We then have that:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{u^{s-1}}{u+1} d u & =-\int_{1}^{0} \frac{\left(\frac{1}{v}\right)^{s-1}}{\frac{1}{v}+1} \frac{d v}{v^{2}} \\
& =\int_{0}^{1} \frac{v^{-s}}{v+1} d v
\end{aligned}
$$

So we then have that:

$$
\begin{aligned}
\Gamma(s) \Gamma(1-s) & =\int_{0}^{1} \frac{u^{s-1}}{u+1} d u+\int_{0}^{1} \frac{v^{-s}}{v+1} d v \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int u^{n+s-1} d u+\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} v^{n-s} d v \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{u^{n+s}}{n+s}\right]_{0}^{1}+\sum_{n=0}^{\infty}\left[(-1)^{n} \frac{v^{n-s+1}}{n-s+1}\right]_{0}^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+s}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n-s+1} \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k+s}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k-s}+\frac{1}{s} \\
& =\frac{1}{s}+\sum_{k=1}^{\infty}(-1)^{k}\left[\frac{1}{k+s}-\frac{1}{k-s}\right] \\
& =\frac{1}{s}-\sum_{k=1}^{\infty}(-1)^{k} \frac{2 s}{k^{2}-s^{2}}
\end{aligned}
$$

We then have that:

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

If s is an integer both sides are infinite, so we most likely have that this is of the form $\frac{c}{\sin (\pi s)}$. If $s=\frac{1}{2}$, we have:

$$
\begin{aligned}
\frac{1}{s}-\sum_{k=1}^{\infty}(-1)^{k} \frac{2 s}{k^{2}-s^{2}} & =2-\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k^{2}-\left(\frac{1}{2}\right)^{2}} \\
& =2-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}-\frac{1}{4}} \\
& =2-4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k-1)(2 k+1)} \\
& =2-4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{2}\left(\frac{1}{2 k-1}-\frac{1}{2 k+1}\right) \\
& =2+2\left(\frac{1}{1}-\frac{1}{3}\right)-2\left(\frac{1}{3}-\frac{1}{5}\right)+\ldots \\
& =4\left(1-\frac{1}{3}+\frac{1}{5}-\ldots\right) \\
& =4 \frac{\pi}{4}
\end{aligned}
$$

This is using the Gregory-Leibniz formula $\left(1-\frac{1}{3}+\frac{1}{5}-\ldots\right)=\frac{\pi}{4}$. As a result, we have that:

$$
\frac{c}{\sin \left(\frac{\pi}{2}\right)}=c=\frac{\pi}{4} \cdot 4=\pi
$$

