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1 Models with Z, Symmetry

We have that the in the Z, model, spins are planar vectors of unitary length
can be identifed by discrete angels 6; with respect to the horizontal axes:

al®) = %k_o,m -1

We then have that the hamiltonian for this system is:
H=-7% 79,5,
<ij>
=-J Z cos(6; — 6;)
<ij>

We have that this system is invariant under the transformation & — k + m(
mod n). For n = 2, we get the regular Ising Model or the 2-state Potts model.
When n = 3, we have 3-state Potts model. When n — oo we have that Z,
becomes equivalent to O(2) model. We have for the 1-D Model:

nzl Zl exp (chos( (6 —91+1)>>

0:=0 On=0

For N = 1, we have that Zy = n (number of possible states). We then find
that the rest of the partition function using recursive method:

n—1
2
Ini1=Zn Z exp (Jcos (;(91\7 - 9N+1)>>

ON+1=0

We then have that we can say pq(J,n) = ZZ;_L:O exp (Jcos (2 (On — Ont1))).
We have that Zy = n[u1(J,n)]V 1. We then have that the correlation function
of two spins is:

)= (5 S

= (cos(6; — i)



We have that:

N-1
(Si+ Sivr) = 2ZxN' Z Sk Sk4r€xp (Z JS; - Si+1>

{S1,...5n} =0

If we then use the fact that 3 g, Selss = pa(J,n)S’, we have that:

3 B = (22 n>>r

/1'1(‘]7 n)

2 Proof of the Cosecant Identity
We have that:

I'(s)I'(1 — s) = wese(ms)

We have that our definition is:

So we have:
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We do a change of variables u = %, with du = df, dx = ydu, so that we have
that:

[(s)D(1—s) = / h /O " e () ey~ dyda

0
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We then have that we can use geometric series to solve this integral:

11
T+u 11— (~u)

oo
-S>y
n=0
Where we have that u € [0,1). We can then take:

oo , s—1 1, s5—1 oo , s—1
/ Y du:/ Y du+/ Y du
du

We make the variable change of the form u = %, and we have that dv = — 73,
and we have that du = —u?dv. We then have that:

00 s 0 /1 s—1
/ us1 du — 7/ (5) @
1 u+1 R

1 —5
:/ Y dv
o v+1

So we then have that:
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We then have that:
T
T'(s)I'(1 —s) =
()T 2 sin(7s)



If s is an integer both Sides are infinite, so we most likely have that this is of

the form Sm(cm) If s = =, we have:
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This is using the Gregory-Leibniz formula (1 — % + % — ) = 7. As a result,
we have that:
c 0
=CcC= —- 4 =TT
sin (g) 4



