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1 Models with Zn Symmetry

We have that the in the Zn model, spins are planar vectors of unitary length
can be identifed by discrete angels θi with respect to the horizontal axes:

a(k) =
2πk

n
, k = 0, 1, 2, ...n− 1

We then have that the hamiltonian for this system is:

H = −J
∑
<ij>

−→
S i ·

−→
S j

= −J
∑
<ij>

cos(θi − θj)

We have that this system is invariant under the transformation k → k + m(
mod n). For n = 2, we get the regular Ising Model or the 2-state Potts model.
When n = 3, we have 3-state Potts model. When n → ∞ we have that Zn

becomes equivalent to O(2) model. We have for the 1-D Model:

Zn =

n−1∑
θ1=0

...

n−1∑
θN=0

exp

(
J

N−1∑
i=0

cos

(
2π

n
(θi − θi+1)

))

For N = 1, we have that ZN = n (number of possible states). We then find
that the rest of the partition function using recursive method:

ZN+1 = ZN

n−1∑
θN+1=0

exp

(
J cos

(
2π

n
(θN − θN+1)

))

We then have that we can say µ1(J, n) =
∑n−1

θN+1=0 exp
(
J cos

(
2π
n (θN − θN+1)

))
.

We have that ZN = n[µ1(J, n)]
N−1. We then have that the correlation function

of two spins is:

G(r) = ⟨
−→
S i ·

−→
S i+r⟩

= ⟨cos(θi − θi+r)⟩
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We have that:

⟨Si · Si+r⟩ = Z−1
N

∑
{S1,...SN}

Sk · Sk+r exp

(
N−1∑
i=0

JSi · Si+1

)

If we then use the fact that
∑

{S}
−→
S eJS·S′

= µ2(J, n)S
′, we have that:

⟨
−→
S i ·

−→
S i+r⟩ =

(
µ2(J, n)

µ1(J, n)

)r

2 Proof of the Cosecant Identity

We have that:

Γ(s)Γ(1− s) = π csc(πs)

=
π

sin(πs)

We have that our definition is:

Γ(s) =

∫ ∞

0

e−xxs−1

So we have:

Γ

(
1

2

)
= Γ

(
1

2

)2

Γ(s)Γ(1− s) =

∫ ∞

0

e−xxs−1dx

∫ ∞

0

e−yy−s−1dy

=

∫ ∞

0

∫ ∞

0

e−xxs−1e−yy−sdydx

We do a change of variables u = x
y , with du = dx

y , dx = ydu, so that we have
that:

Γ(s)Γ(1− s) =

∫ ∞

0

∫ ∞

0

e−uy(uy)s−1e−yy−sdydx

=

∫ ∞

0

us−1

∫ ∞

0

e−(u+1)ydydu

=

∫ ∞

0

[
us−1

[
e−(u+1)y

u+ 1

]]∞
0

du

=

∫ ∞

0

us−1

u+ 1
du
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We then have that we can use geometric series to solve this integral:

1

1 + u
=

1

1− (−u)

=

∞∑
n=0

(−u)n

Where we have that u ∈ [0, 1). We can then take:∫ ∞

0

us−1

u+ 1
du =

∫ 1

0

us−1

u+ 1
du+

∫ ∞

1

us−1

u+ 1
du

We make the variable change of the form u = 1
v , and we have that dv = −du

u2 ,
and we have that du = −u2dv. We then have that:∫ ∞

1

us−1

u+ 1
du = −

∫ 0

1

(
1
v

)s−1

1
v + 1

dv

v2

=

∫ 1

0

v−s

v + 1
dv

So we then have that:

Γ(s)Γ(1− s) =

∫ 1

0

us−1

u+ 1
du+

∫ 1

0

v−s

v + 1
dv

=

∞∑
n=0

(−1)n
∫

un+s−1du+

∞∑
n=0

(−1)n
∫ 1

0

vn−sdv

=

∞∑
n=0

(−1)n
[
un+s

n+ s

]1
0

+

∞∑
n=0

[
(−1)n

vn−s+1

n− s+ 1

]1
0

=

∞∑
n=0

(−1)n

n+ s
+

∞∑
n=0

(−1)n

n− s+ 1

=

∞∑
k=1

(−1)k

k + s
+

∞∑
k=1

(−1)k+1

k − s
+

1

s

=
1

s
+

∞∑
k=1

(−1)k
[

1

k + s
− 1

k − s

]

=
1

s
−

∞∑
k=1

(−1)k
2s

k2 − s2

We then have that:

Γ(s)Γ(1− s) =
π

sin(πs)
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If s is an integer both sides are infinite, so we most likely have that this is of
the form c

sin(πs) . If s =
1
2 , we have:

1

s
−

∞∑
k=1

(−1)k
2s

k2 − s2
= 2−

∞∑
k=1

(−1)k
1

k2 −
(
1
2

)2
= 2−

∞∑
k=1

(−1)k

k2 − 1
4

= 2− 4

∞∑
k=1

(−1)k

(2k − 1)(2k + 1)

= 2− 4

∞∑
k=1

(−1)k

2

(
1

2k − 1
− 1

2k + 1

)
= 2 + 2

(
1

1
− 1

3

)
− 2

(
1

3
− 1

5

)
+ ...

= 4

(
1− 1

3
+

1

5
− ...

)
= 4

π

4

This is using the Gregory-Leibniz formula
(
1− 1

3 + 1
5 − ...

)
= π

4 . As a result,
we have that:

c

sin
(
π
2

) = c =
π

4
· 4 = π
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