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1 The Classical Perspective on the Kepler Problem

The dynamics of the Kepler problem are most clear from the Lagrangian perspective.
We can introduce the Lagrangian:

L = K − V =
1

2
m ˙⃗x2 −

(
−k

r

)
=

1

2
mṙ2 +

1

2
mr2θ̇2 +

k

r

and now use the Euler-Lagrange equations (or equivalently the minimization of the
variation of the action – δS = 0 with S =

∫
Ldt = 0).

∂L
∂xi

=
d

dt

∂L
∂ẋi

=⇒ mrθ̇2 − k

r2
= mr̈

for r, and

=⇒ 0 =
d

dt
(mr2θ̇)

for θ.

The θ equation tells us that the angular momentum L = mr2θ̇ is conserved. So we
can write θ̇ = L

mr2
and simplify the r equation from above to get

r̈ =
L2

m2r3
− k

mr2

then make a change of variables to u(θ) = 1
r
and use that d

dt
= L

mr2
d
dθ

to rewrite the equation of motion as

d2u

dθ2
= −u+

km

L2

which is of course solved by
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u(θ) =
1

r(θ)
=

km

L2
(1 + e cos(θ + θ0))

which can be fully solved by finding θ(t) to calculate r(t). This concludes the brief
review of how elliptic orbits are derived from the Lagrangian.

Now we can briefly review the relative simplicity of the approach that uses the Lenz
vector, a ’hidden’ conserved quantity.

Conserved quantities:

L⃗ = r⃗ × p⃗

A⃗ = p⃗× L⃗−mkr̂

Dotting A⃗ with r⃗:

A⃗ · r⃗ = (p⃗× L⃗) · r⃗ −mkr

= (L⃗× r⃗) · p⃗−mkr

= L2 −mkr

We also of course can write this dot product as

A⃗ · r⃗ = Ar cos θ

So we equate these to find

Ar cos θ = L2 −mkr

r(A cos θ +mk) = L2

r(θ) =
L2

mk + A cos θ

Now again define eccentricity e = A
mk

, then:

r(θ) =
L2/(mk)

1 + e cos θ

Conserved Quantities and Noether’s Theorem.

Theorem 1.1. Suppose your Lagrangian is invariant under the action of some contin-
uous symmetry. Then there exists a corresponding conserved quantity.

In this problem, we saw conservation of angular momentum, and conservation of
energy is also present, although was not explicitly used. These are standard conserved
quantities resulting from rotational and time translation symmetries, respectively.
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For our purposes it’s best to see that we can express conservation of angular momen-
tum L by computing the Poisson bracket:

{Li, H} = 0

In this problem, and occasionally elsewhere, there exist hidden symmetries, and there-
fore conserved quantities that can simplify our work. In the case of the Kepler problem,
this is the Runge-Lenz vector, defined by

A⃗ =
1

m
(L× p)− k

q

|q|
As we’ll see later, this Lenz vector corresponds to an so(4) symmetry algebra, which

in fact can be enlarged to o(4). One way of seeing this is looking at the phase space, and
choosing a hypersurface at a fixed energy. It naturally becomes a 3-sphere, which has a
full symmetry group of O(4).

2 Mathematical Perspective

This section primarily uses Marsden’s Foundations of Mechanics as a reference.

Theorem 2.1. Let M be a pseudo-Riemannian manifold and let a group G act on M by
isometries. Lift the action to a symplectic action on TM. Then its momentum mapping
is given by

Ĵ(ξ)(vq) = ⟨vq, ξM(q)⟩

Now we’ll consider the case of angular momentum from this framework. Let M = Rn

and let G be a Lie subgroup of GL(n,R). Let G act on M by Φ : G × M → M by
(T, p) 7→ Tp. The infinitesimal generator corresponding to the Lie algebra g ⊂ L(Rn,Rn)
is BM(p) = Bp. Then the momentum mapping on T ∗M is given by

Ĵ(B)(p, q) = q(Bp)

2.1 Poisson Brackets

It’s worth taking a moment to note that the Poisson bracket can be regarded as a closed
2-form on the phase space. In canonical coordinates (q1, . . . qn, p1, . . . pn), we write

ω = dqi ∧ dpi

Then we can write the Poisson bracket as

{f, g} = ω(Xf , Xg)

3



Where Xf is the Hamiltonian vector field associated to f . Whether a vector field is
Hamiltonian is determined by

iXf
ω = df

and we will now show this. We’ll write Xf as a vector field in canonical coordinates
on the tangent bundle as

Xf =
n∑

i=1

(
Ai

∂

∂qi
+Bi

∂

∂pi

)
Now since we have the property

ιV (α ∧ β) = (ιV α)β − α(ιV β)

This implies that

ιXf
ω =

n∑
i=1

(
(ιXf

dqi)dpi − dqi(ιXf
dpi)

)
So we find the following and then equate it to df to find

ιXf
ω =

n∑
i=1

(Aidpi −Bidqi) = df =
n∑

i=1

(
∂f

∂qi
dqi +

∂f

∂pi
dpi

)
So we have

Ai =
∂f

∂pi

Bi = − ∂f

∂qi

which we can then use to conclude that Xf takes the form

Xf =
n∑

i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
Which, if you’d like to check, of course reproduces the standard Poisson bracket:

{f, g} = ω(Xf , Xg) =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

It’s also useful to know that we can write Xf = J · df , where J =

(
0 I
−I 0

)
.
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2.2 New Perspectives

This section is primarily based on Guillemin and Sternberg’s Variations on a Theme by
Kepler. Iwai [Iwa81] and Mladenov [Mla89] presented a new an quite interesting way of
viewing the Kepler from ’above’ – from a Hamiltonian on R4 \ {0} × R with Lorentzian
metric

ds2 = 4||y||2(dy2 − dw2)

with y ∈ R4 \ {0} and w ∈ R. Then we define an energy function on the cotangent
bundle T ∗(R4 \ {0} × R) by

E(y, w; η, τ) =
1

8||y||2
(||η||2 − τ 2)

And now we consider the action of the group

G = U(1)× R

R acts by translations on the time coordinate, while the action of U(1) on R4 \ {0}
is generated by

M0 =

(
J 0
0 J

)
,

J =

(
0 −1
1 0

)
We can continue this by defining three more similar matrices, and then define func-

tions on R4 \ {0} by
xi = Miy · y

where i = 1, 2, 3. This defines a projection map π onto R3. What we can see from this is
that R4\{0}×R can be viewed as a principal G bundle over R3 for the G in consideration.
Now we consider the moment map of the R component of the action, which is trivial; it
is the function τ . So the reduced energy function becomes

E(y, η) =
1

8

||η||2

||y||2
− α

||y||2

Which is interesting for the fact that it allows us to study the Kepler problem as this
Hamiltonian on T ∗R4 ⊂ R8. This can be shown by reducing the Hamiltonian under U(1)
now that we’ve done the same for R. Say we have some ξ = ξidx

i ∈ T ∗R3. Then we can
define a map dπ∗

y at all y ∈ T ∗R4 by dπ∗
y(dxi) = 2Miy · dy. This lets us write that for

η = dπ∗
yξ, say ||η||2 = 4||y||2||ξ||2. This is the final step to reduce the Hamiltonian (at

E = 0) to

0 =
1

8

4||y||2||ξ||2

||y||2
− α

||y||2
=

1

2
||ξ||2 − α

||x||
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where in the last step we used ||x|| = ||y||2, which can be quickly derived from the
definition of the xi maps.

To give some motivation for why this is remotely useful, we should first construct the
reduced Hamiltonian at arbitrary energy level E. So we derive a new Hamiltonian:

4||y||2
(
H +

k

8

)
=

1

2
(||η||2 + k||y||2)− 4α (1)

4||y||2
(
H +

k

8

)
= Uk − 4α (2)

=⇒ H−1

(
−k

8

)
= U−1

k (4α) (3)

The use here is that Uk is now simply the Hamiltonian of a harmonic oscillator in R8.
Now we may use these equations – somewhat surprisingly if the general picture is still
unclear – to derive the energy levels of the Hydrogen atom [Mla89].

Start by rewriting a = λ2 and noting that Uk has the standard result of having
eigenvalues

λ

(
n+

1

2

)
And so performing this reduction at Uk = 4α, and choosing E = −λ2

8
. So we find

4α = λ (n+ 1)

and thus, after using this constraint to derive λ, we can write

En = − 2α2

(n+ 1)2

with n = 0, 1, . . .. These are precisely the energy levels of the hydrogen atom. From
my own perspective, this derivation is physically a little loose, and doesn’t exactly seem
novel, but this could be due to a lack of understanding. Regardless, these reduction
arguments gained interest for good enough reason, especially in the 1990’s.

3 Quantizing the System

We can somewhat easily extend this discussion by promoting the Hamiltonian to the
operator Hamiltonian Ĥ.

First, it’ll be useful to briefly discuss the form of the o(n) algebra. To quickly derive
the form of elements of this algebra, consider an element of the tangent space at the
identity

X =
d

dt
A
∣∣∣
t=0
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We know that any A ∈ O(n) satisfies ATA = I, so we differentiate this and evaluate at
t = 0 to find:

(
d

dt
AT

) ∣∣∣
t=0

A(0) + AT (0)

(
d

dt
A

) ∣∣∣
t=0

= 0

XT +X = 0

So we define o(n) as

o(n) = {A ∈ Mn(R) : AT = −A}

Clearly dim(o(n)) = n(n−1)
2

by considering the number of independent components of any
n× n matrix after imposing the skew-symmetric condition.

For o(3), for instance, we have the basis0 0 0
0 0 −1
0 1 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 −1 0
1 0 0
0 0 0


and for o(4) something interesting can be observed. We can either be stubborn and

enforce a similar basis of six Eij skew-symmetric basis vectors for this space, with

E42 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


, for instance. We also have the more insightful approach, where we write any element

of o(4) as (
A b

−bT 0

)
, A ∈ o(3), b ∈ R3

where we have the new bracketing defined by

[(0, b1), (0, b2)] = ([b1, b2]o(3), 0)

These two mentioned approaches are of course equivalent, and hopefully it’s clear
enough why. The second is just a bit more explicit in separating out two copies of o(3),
which is ultimately the goal. So we can easily see that

o(4) ∼= o(3)⊕ o(3)
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3.1 Back to the Quantized Model

We’ll rewrite A⃗ from before as an operator, and we end up with the following commutation
relations:

[Ai, H] = 0

[Li, Aj] = iℏϵijkAk

[Ai, Aj] = −iℏϵijkLk

(
2H

m

)
First two aren’t surprising; they tell us that Ai is conserved, and that Ai transforms

under SO(3) as would any regular vector. But this last relation is very unusual; we’ll
address this later. What’s most important to note here is that since we can see that Ai

preserves our energy eigenstates, but doesn’t commute with the Li, this implies that our
symmetry algebra must actually be larger than so(3), unexpectedly.

In addition to these commutation relations, we can also find the following properties
of Ai:

L⃗ · A⃗ = A⃗ · L⃗ = 0

A2 = k2I+
2H

m
(L2 + ℏ2I)

We’ll now rescale in order to get a more sensible commutation relation between the
Ai-like rescaled operators. After writing

K =

√
− m

2E
A

We can immediately rewrite all of the previous equations:

2H(K2 + L2 + ℏ2I) = −mk2I
[Li, Lj] = iℏϵijkLk

[Li, Kj] = iℏϵijkKk

[Ki, Kj] = iℏϵijkLk

Now, much like in the standard procedure of analyzing the spin representations of the
Lorentz algebra (very much worth reading about if this topic interests you), we’ll define
new operators out of L and K in order to derive the true structure of the algebra we’re
seeing.

M =
1

2
(L+K)

N =
1

2
(L−K)
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[Mi,Mj] = iℏϵijkMk

[Ni, Nj] = iℏϵijkNk

[Ni,Mj] = 0

and finally we can see that we succeeded in splitting our algebra up into two isomor-
phic pieces. In particular, this is in fact

spin(4) = so(4) = so(3)× so(3)

Finally, we’ll show another cleaner derivation of the Hydrogen energy levels from this.
Note also that M2 = N2. To relate H to these N,M , write

2H(K2 + L2 + ℏ2I) = 2H(2M2 + 2N2 + ℏ2I) = 2H(4M2 + ℏ2I) = −me4I

And finally note that we always have the fact that on some irrep corresponding to
half-integral spin s, we have M2 = ℏ2s(s + 1) which, after writing n = 2s + 1, we can
write

En = − me4

2ℏ2(4s(s+ 1) + 1)
= − me4

2ℏ2(2s+ 1)2
= − me4

2ℏ2n2

This is a nice result, especially for the fact that it shows that the n2 degeneracy in
the energy levels (there are n2 possible states at energy level En) corresponds to this fact
that these special operators M and N (called Casimirs) maintain equality. You might
be tempted to ask what happens when we want to consider states that aren’t bound,
since all of this analysis requires E < 0. In that case we get the Lie algebra so(3, 1) and
corresponding scattering states. (See Woit p.243 for more)
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