Chang Yoon Seuk (uni: cs4056) Deligne - Lustzig Theory Motivation: (by V. Drinfeld) The discrete series rep of Sha(IFq) can be obtained through l-adic cohomology of the curve over F_q , s.t. $xy^q - x^q y = 1$ Ruk: IFq is a finite field (i.e. Galois field) with 9 elts. A finite field of order 9 exists <=> 9=P^k for P be a prime, k E Z>o Rink: l-adic cohomology: l is a prime number different from char P of Ita. To understand objects (varieties, groups) over 1Fq., we employ l-adic colly gps, which allows us to carry natural action of the Frobenius map. Strategy: Rep of Sha(IFq.) -> Drinfeld carve -> Delign-Lusting variety I) Defin $Sh_2(|F_q) = i \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gh_2(|F_q) : ad-bc=1f$ Property: 1) Sha(Fg) is finite, non-abelian, and simple for G>3f 2) $|S_{12}(|F_{q})| = q(q^2-1)$ (choose q^2-1 first column ; q choices for second) Rmk. A gp is simple 'if it has no non-trivial subgps other than its identity. So, for q>3, the center 7 = 1 ± Ids, and the quot t gp Shalls/12 is PSha(Fq) (projective specier) linear gp) For non-abelian, for any q>2, take matrices $A=\begin{pmatrix} 1\\ 0 \end{pmatrix}$ and $B=\begin{pmatrix} 1\\ 1 \end{pmatrix}$, then $AB = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \neq BA = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Also, since Sha (IFa) is simple for 9>3, if has no nontrivial 1-dimen's rep

Now, let us delve into the vep theory of Sha(IFq)

We have h= Sha (IFq), which is finite. We want to show all imedile complex reprzn of G. # ineducible rep = # conjugacy class of $Sh_2(IF_4) = 9.+4$ Upshot : (enter Z Semisimple j split $\begin{pmatrix} a & o \\ o & a^{-1} \end{pmatrix}$; $a \neq Id$ $\frac{9-3}{2}$ $\begin{cases} 2+\frac{9-3}{2}+\frac{9-1}{2}+4=9+4\\ 1001-split \begin{pmatrix} 0 & -\zeta^{-1} \\ \zeta & 0 \end{pmatrix} & \frac{9-1}{2} \end{cases}$ ± Zd unipotent $\begin{pmatrix} \pm 1 & b \\ 0 & \pm 1 \end{pmatrix} b \neq 1$ For the semi-simple port, Shaller) has two types of maxil tori i) split torous $T = \left(\begin{pmatrix} a & o \\ \sigma & \sigma^i \end{pmatrix} : a \in [F_x]^c \right)$; diagile over $[F_{q_x}]$ Characters of this torus give the 'principal series' via induction ii) Non-split times: $T' = \left\{ \begin{pmatrix} 0 & -\zeta^{\dagger} \\ r & \rho \end{pmatrix} : \zeta \in M_{q+1} \right\}$, where M_{q+1} are rats of unity of order 9+1. So, $\mu_{q,H} = \text{Ker}(N: | F_{q,2}^{\times} \rightarrow | F_{q}) \subseteq SL_2(q)$; its matrices cannot be diagn'le over 1Fq, but only after passing Fq2. Discrete series rep (cuspidal) follows We first work on principal series rep of Sta (152) Rink. In algic gp theory, a Burel subgip G (here Stalling) is a max'l

we know that solvable means, a gp can be break-down into finitely mony abelian gps.

connected solvable subgip.

In ShallFg], let $B = \{ \begin{pmatrix} a \\ p \\ a^{-1} \end{pmatrix} : a \in |F_q^{\times}, b \in |F_q| \}$. 2×2 matrices with det = 1. Inside B, a special subgp called unipotent gp $U = \left(\begin{pmatrix} 1 & b \\ 0 & i \end{pmatrix} \right) : b \in \mathbb{F}_{4} f$, where all eigenvalues one 1. (we can think of U as almost identify or 2x2 upper - triangular matrices with 1s on its diagonal). Then, we find the Borel subgp B = TKU (semi-direct product) Now, we choose a choic θ : T —> \mathbb{C}^{\times} , (gp hom'sm) Fuct f sends each $\begin{pmatrix} \alpha & 0 \\ \upsilon & \alpha^{+} \end{pmatrix}$ $t_{\upsilon} & \Theta(\alpha) \in \mathbb{C}^{\times}$ only depends on α Hence, there are q-1 characters since F_q^{\times} is cycle of order q-1. But we want θ into B not just T. i.e. θ extends trivially through U. $\theta\left(\begin{pmatrix}a & b\\ a & a^{\dagger}\end{pmatrix}\right) = \theta\left(\begin{pmatrix}a & o\\ o & a^{\dagger}\end{pmatrix}\right) = \theta(a).$ Here, the unipotent U acts trivially. We define induction from B to G , s.t. $T_{\theta} = Ind_{\alpha}^{6}(\theta)$. This means if we consider a find $\sigma: G \rightarrow \mathbb{C}^{\times}$, st. $\sigma(bg) = O(b)\sigma(g) + beB, geshlip)$ so $G(\mathcal{J} \, \sigma \, by \, \text{Hight transin } (q \cdot \sigma)^2) = \sigma(xq)$. (We upgrade a small choracter & into large & rich rep of G) We have 3 cases to consider. (all it porabolic induction

- 1) $\theta \neq \theta^{-1}$ (generic) so each character are distinct. Recall that $|F_q^{\times}|$ has q-1 characters so we take off trivial $\frac{1}{2} = \theta^2 = 0$ and θ^{-1} in some gp, we get $\frac{9-3}{2}$
- 2) $\theta^2 = |$ but $\theta \neq |$ (quadratic) : Observe Π_{θ} is not investible so each splits info two investile veps with same dimension. (2 reps) Recall dim ($\Pi_{\theta} = \theta^{G}(\theta)$) = $\Gamma_{G} : B^2 = 9 + 1 = 2 = 2 = 2$
- 3) 0 = | (Trivial) $\begin{cases} \dim \theta = l \\ \text{steinberg} = 9 \end{cases}$ 2 reps
- Sum all: $\frac{4-3}{2} + 2 + 2 = \frac{9+5}{2}$ total reps.
- 72) Discrete series : we need to find $\frac{9+3}{2}$ ineducible reps. Progress further, we introduce Drinfeld curve to Deligne-kustizing variety. Re-visit $Y = xy^{q} - x^{q}y = 1$ over |Fq : the curve Y corries large qpof auctomorphisms. The qp μ_{q+1} $\bigcap Y$ by multiplying constinutes $Sh_2(|Fq|)$ $\bigcap Y$ by incor transformation In fact $\mu_{q+1} \neq Sh_2(|Fq|)$ commute each other =) $\int_{m_{q+1}}^{m_{q+1}} x Sh_2(|Fq|) (\bigcap Y)$

What is this mean? Since
$$\mu_{qH}$$
 acts on it by $\zeta \cdot (x,y) = (\zeta x, \zeta y)$,
it admits to say $\begin{pmatrix} ax + by & (az+by)^{q} \\ (z + dy & (cz+dy)^{q} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & x^{q} \\ y & y^{q} \end{pmatrix}$ by ohar P
, and so fixes $det\begin{pmatrix} x & x^{q} \\ y & y^{q} \end{pmatrix} = xy^{q} - x^{q}y = 1$

By compactif's the genus of \overline{Y} of Y is $g = \frac{9\cdot(9+1)}{2}$. Since $\mu_{q,H} \times SL_2(|\overline{F_q}|)$ (\overline{Y} , we study ℓ -adic étale cohomology qp of Y: $H_c^2(Y, \overline{Q}_\ell)$ and this cohomology becomes rep of $SL_2(|\overline{F_q}|)$ Defn : Introduce Deligne - Lust zig induction

Recall $\theta: \mu_{q+1} \longrightarrow C^{\times}$ be a character, then we define $R(\theta) = H_{c}^{*}(\Upsilon)[\theta] = \sum_{i} (H)^{i} H_{c}^{i}(\Upsilon)[\theta]$. For each θ , we get a virtual representation of $S_{12}([Fq])$. So when $\theta \neq 1$, it yields to irreducible discrete reps.

<u>Them</u> Every imeducible rep of G_r^F (finite gp of Lie type) appears in $R_W(\theta)$ for some $W \in W = N_G(T)/T$ and $\theta : T^{W^T} \longrightarrow \mathbb{C}^K$. Moreover, the inner product on virtual characters:

$$\langle R_{W}(\theta), R_{W}(\theta) \rangle = # \{z \in W^{F} : z \cdot \theta = \theta \}$$

 $T^{WF} = max^{i} | torus associd W/W, having Frobenius structure.
 $W^{F} = Wey|$ group of elects fixed by F.
So in SLo(IFq.), $W \cong Z/2Z$; $\theta \neq 0^{-1}$ then $R_{W}(\theta)$ is irreducible
 $\theta = \theta^{-1}$ ir splits into two irreducible
Rmk. 'Variety' means set of sol'n to a poly'l eq'n.
 $W/$ structrures (smooth, quasi-projective)
Racquily, geometric object that is cut out by poly'l eq'ns.
So, over a field IF, it is aspace locally described by sol'n to poly'l eq'ns
(e.g. elliptic curve $y^{2} = x^{3} + x$)$