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BefHistorical Relevance

· elliptic curve cryptography
· Fermat's Last theorem - Andrew Wiles

· modular forms

Outline
-

· Referenced MIT Lecture slides
,

J
.

S. Milne Elliptic Curves

· discuss elliptic curves

· discuss group theory
· proof outline of group

law on elliptic curves

Elliptic curves

-> have a lot of structure

->
can have points with coordinates in any field :

#p ,
Q

,
R

,
K

- Recall : A field is a set with two binary operations on

I called addition (1) and multiplication (a)
, satisfying the

field axioms
,

↳ elliptic curves with coordinates in #p are finite groups .

#ef An elliptic curve is a smooth projective curve of genus

1 with a distinguished point . More precisely ,
an elliptic curve

over a field K is a smooth projective curve of genus 1

(defined over K) with a distinguished (k-rational) point.

* intuitively ,
the genus is the number of "holes" of a surface

O G

I

let the projective plane over K is

P(k) = ((X , y ,
z) + k3)(x , y , z) + 10

,
0

,073

/Projective n-space PV(K)
,
n IN can be defined similarly)

where (X
, 4 ,

z) v(X
, Y' · z'] if and only if there exists a C + 0 in 1

such that (x
, y'z') = ((X, <Y , (E) .

Pe((12)



Let the projective point (X :: E) is the equivalence class of

(x
, y , z)

Note : points of the form (X :
y : 1) are called finepoints.

They form an affine (Euclidean) plane A2(K) embedded

in P2CK) .

Points of the form (x : % : 0) are called points at
-

infinity consist of points (X : 1 : 0) and (1 : 0 : 8) which
-

form Lo(k) ,
PlK) embedded in 1PEK).

Lef A nonconstant homogeneous polynomial F- K(X, 4 . z7 ,

assumed to have no repeated factors in E
,

defines a projective
plane curve C over whose points in any field K > K

are the zeros of in P(K)
.

The K-rational

points of C form the set

C (k) = G(x : y
: z) = PY(k)/ f(x , y ,

z) = 03

A point PE C
,
(K) is singular if of of o all

vanish at P. Cf is smooth (nonsingular
-

if there are

no singular points in C (K).

Def A Weierstrass elliptic curve is given by an equation of

the form

Ey = x3 + Ax + B3
for which the discriminant 1 = 4A3 + 27B2 is nonzero

(non-singularity condition : the polynomial X3 + Ax + B has distinct roots)

Now let's talk about adding points on an elliptic curve.
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Q = - PTip reflected

E point

P + Q + R = 0
.

p + P + R = 0, P + q + o = 0

But there's no third

point !
three points on a line sum to 0 !

Bezout's Theorem Let (and D be projective plane curves over K

of degrees m anda respectively having no common component.

Then C and D intersect over I in exactly my points
counted with multiplicity.

For case C (with z
= 0) we add an extra point

at c)

Thus
,

we can express Ey = x3 + Ax + B3[( as

\yz = x3 + axz + bz33EIP
Because of this we are able to define a group operation

on E(K) for any elliptic curve - defined over a field K.

So let's get into group theory...

Lef A
group is a non-empty set G equipped

with a binany operation *: GRG -> G satisfying
the following axioms :

↓is closure
,

If a
,

b E G
,

then ab EG.

(ii) Associativity. a * (b +c) = (a * b) * C

for all a
,
b

,
< E G

,



(iii) Identify .
there exists an element eG St.

a * e = e * a = a for all a t G.

(iv) Inverse. for each element a t G
,

there exists an

element beG s
.

t
,

a* b = e = b * a.

Ref A group G is said to be abelian (commutative

if ab = ba for all a
,
b =G.

Lef A subgroup HCG is normal in G if gH = Hg

for all ge G
.

That is
,

a normal subgroup of a group
G

is one in which the right and left cosets are precisely
the same.

subgroupCollary :Let Gbe anabeliangroup. Evea for all

geG and hel
,

it will always be the case that gH
= Hg.

Def If N is a normal subgroup of a

group G
,

then the

cose to of N inG form a group G/N under the

operation (aN)(bN) = abN
.

This group is called the factor

or quotient group of G and N.

Ex (1) I is an abelian group under addition
.

& (ii) 32 is a normal subgroup of R .
The cosets of

32 in R are :

0 + 32 = E
...,

3
,

0
,

3
,

6
, ...3

1 + 32 = 3 ....
2

,
1

,
4

,
7

, ... 3
2 + 32 = 2 ...,

- 1
,

2
,

5
,

8
.... 3

And R/37 is given by the Cayley table



+ 0 +321 + 372 + 32

0 +320 +321 +37 2 +32I1 + 321 + 37 2 +320 + 32

2 + 322 +320 + 32 1 + 32

So now that we know some basic information about

a group ,
let's prove that the points of an elliptic

curve have a group structure
.

Recall : (i) Closure (ii) associativity (iii) identity (iv) inverse.

With addition defined as before
,
E(k) becomes an abelian

group.

-> closure is obvious since P* Q = P+ Q = -R
.

-> identity : the point (0 : 1 : 0) at co is the identify
element o

-> inverse : the inverse of P = (x : y
: z) is the point

- P = (x : -

y
: z) O

->

Commutativity : P+ Q = Q + P
P* Q

,

-> Associativity : Not so obvious
,

p i
ICi

Many different ways to show ·associativity, but let's focus E
&

on the geometric proof.

#op If two cubic curves in I intersect in exactly wine points
,

then every cubic curve passing through eight of the points also

passes through the ninth.



IConsiderA=xaxy
..o

a
,
x + ayx y

+... + a
,
07 = 0

.

cubic forms having P
, , ...,

Po as zeros form a 2-Dimensional space,

and so there exist I such forms F and G S
.

t . the

remainder can be written

JF + MG ,
1

,
M

= k

F and G have a ninth zero in common
,

and every curve

↓F + MG
= 0 passes through it.

Let 1C9
,
01 =P pass through the points P, Q .

Let

P, Q
,
2 = ((K) Sit

.

s= (p + q)R
,

T = P(Q + R)

(P+ q) + l = 0S & P + (Q + 1) = 04
.

Let's show that S=T
.

E
point

at o

Consider the cubic curves &(0
,
Q) · /(R

,

p+ Q) · ((QR
,

0) = 0
/

1 (1
,

Q +R) · 1(Q
,
2) - ((PQ

,
0) = 0,

both pass through
-> U := / (9

,
P+Q)1l(P

,
Q + R)

We want to show these lines are distinct . i
.

e
. S = U =

T

.

space -

> P int
- Q+ R

of cubic

curves
Q Q R QR

through
P,
.... Pg

has dims .
ele PQ p+ Q O



so every curve ↓F + MG
= 0 passes through it.

O

.

"4. .


