
The Mordell-Weil theorem

Caleb Ji

These are my notes on the Mordell-Weil theorem for elliptic curves. Their main purpose is
to remind me of how the arguments go rather than to provide full details of a proof. They are
drawn from Booher [1], Milne [2], and Silverman [4], where one may find complete details. If I
ever get to it, I also plan to add an outline of the proof for abelian varieties, following Serre [3].
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1 Some background material

1.1 Kummer theory

Given a fieldK containing n distinct nth roots of unity, Kummer theory describes the abelian
extensions of K with exponent dividing n. Thus it may be regarded as a part of class field
theory. The importance of Kummer theory to the Mordell-Weil theorem is the main statement
that

H1
c (GK , µn) = Homc(GK , µn) ∼= K∗/(K∗)n. (1)

This appears when we consider the Galois action on E[n], the n-torsion points of an ellip-
tic curve, and use it as part of a long exact sequence of cohomology to show that the group
E(K)/nE(K) is finite (precisely the statement of weak Mordell-Weil). The goal of this section
is to develop Kummer theory and prove 1, placing it in the context of class field theory.

Remark. The subscript H i
c (or Homc) denotes continuous cohomology. Like many authors, we

will drop this subscript for convenience. When working with a profinite group like GK , one
would generally want continuousmaps anyways. For an exposition of continuous cohomology,
we refer the reader to [5].

Cohomological proof of 1

Fix a field K and take any n such that char(K) - n. Let µn be the group of nth roots of unity
contained in K, which must be distinct by the assumption on the characteristic. Let GK =
Gal(K/K). Then we have an exact sequence of discrete GK-modules

1→ µn → K∗
•n−→ K∗ → 1.
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The associated long exact sequence of (continuous!) cohomology reads

1→ µn → K∗
•n−→ K∗ → H1(GK , µn)

i1−→ H1(GK ,K
∗)
•n−→ · · ·

From this we deduce thatK∗/(K∗)n ∼= ker i1. Moreover, becauseGK acts trivially on these
modules, the first cohomology groups are just continuous homomorphisms.

We recall that by Hilbert’s Theorem 90,H1(Gal(L/K),K∗) = 0when L/K is a finite Galois
extension. In our scenario, we have

GK = lim←−
[L:K] finite

L/K ⇒ Hn(GK ,K
∗) = lim−→

L

Hn(L/K,K∗) = 0,

where the passage to the direct limit takes some technical checking.
With this, we obtain

H1(GK , µn) = Hom(GK , µn) ∼= K∗/(K∗)n,

as desired.

1.2 The Selmer and Tate-Shafarevich groups

LetK be a number field and letKv be its completion at a finite place v. For convenience, wewill
denote E(F ) by simply E where appropriate. Then the natural homomorphism Gal(GKv) →
Gal(GK) induces a map H1(GK , E) → H1(GKv , E), and similarly when E is replaced by E[n].
We can make sense of these maps using group cohomology.

Let E be an elliptic curve defined over K. It is not hard to show that ·nE(K) → E(K) is
surjective. We therefore have an exact sequence

0→ E[n]→ E(K)
·n−→ E(K)→ 0.

First, we assume that E[n] ⊂ K. This leads to the long exact sequence

0→ E[n]→ E(K)
·n−→ E(K)→ H1(GK , E[n])→ H1(GK , E(K))

·n−→ · · · .

We extract from this the short exact sequence

0→ E(K)/nE(K)
f−→ H1(GK , E[n])→ H1(GK , E(K))[n]→ 0.

ReplacingK withKv and taking the maps between them, we obtain the following commu-
tative diagram.

0 E(K)/nE(K) H1(GK , E[n]) H1(GKv , E)[n] 0

0 E(Kv)/nE(Kv) H1(GKv , E[n]) H1(GKv , E)[n] 0

Now we can define the Selmer group and the Tate-Shafarevich group.

Definition 1.1 (Selmer group). The Selmer group, denoted S(n)(E/K) is defined by

S(n)(E/K) = ker

(
H1(GK , E[n])→

∏
v

H1(GKv , E)

)
.
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Definition 1.2 (Tate-Shafarevich group). The Tate-Shafarevich group, denotedX(E/K), is de-
fined by

X(E/K) = ker

(
H1(GK , E)→

∏
v

H1(GKv , E)

)
.

Note that the Selmer group can be characterizd as the subgroup ofH1(GK , E[n]) that comes
from an element of E(Kv) for every v. Thus it should not be too surprising that by diagram
chasing, we obtain the following exact sequence.

0→ E(K)→ nE(K)→ S(n)(E/K)→X(E/K)[n]→ 0. (2)

2 The Mordell-Weil theorem for elliptic curves

The proof of the Mordell-Weil theorem, both in the case of elliptic curves and in the general
case, proceeds in two steps. First, we prove the weak Mordell-Weil theorem, which states that
E(K)/nE(K) is finite for any positive integer n. Then we use the theory of heights to finish.

2.1 Weak Mordell-Weil

In this section, we sketch the proof of the following theorem. Full details may be found in
Milne [2]; Silverman [4] gives a different proof. We will prove a generalization of this theorem
in this following section.

Theorem 2.1. [weak Mordell-Weil] Let E be an elliptic curve defined over a number field K. For
any positive integer n, the group E(K)/nE(K) is finite.

Wewould like to use the exact sequence 2, which states thatE(K)/nE(K) embeds into the
Selmer group S(n)(E/K). However, recall that this was all based on the assumption that K
contains E[n]. However, it is not hard to see that we can make this assumption, in which case
one can show that we also have µn ∈ K. Indeed, let L = E(K)[E[n]]. By considering the long
exact sequence of GL/K associated to the short exact sequence

0→ E[n]→ E(L)→ mE(L)→ 0,

we readily obtain the following proposition.

Proposition 2.2. If E(L)/nE(L) is finite, then E(K)/nE(K) is also finite.

To prove Theorem 2.1, it now suffices to show that the Selmer group S(n)(E/K) is finite.

Sketch of proof of finiteness of S(n)(E/K). We let S be the finite set of places dividing n and
where E has bad reduction. (We are only working with finite places.) The Selmer group con-
sists of the elements ξ of H1(GK , E[n]) which go to 0 in H1(GKv , E). For v 6∈ S, this is equiv-
alent to ξ being unramified at v. Viewing ξ as an element ofK∗/(K∗)n, one shows that this is
equivalent to n|νv(α) for v outside S. Call the subgroup satisfying thisH.

We obtain a map H → (Z/nZ)|S| defined by α 7→ {νpi(α) (mod n)} as pi ranges over the
primes in S. Wemust show that the kernelH0 is finite. Since the kernel consists ofmth powers,
we can define another map H0 → Cl(OK) sending α to a, where an = (α). Since Cl(OK) is
finite, it suffices to show that the kernel of this map is finite. This kernel consists of a unit of
OK multiplied by an nth power, and we are modding out the nth powers too. Thus the kernel
may be identified with a subset of O∗K/(O∗K)n, which is finite by Dirichlet’s unit theorem.
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2.2 Heights

Here we sketch the argument using heights from which the Mordell-Weil theorem is deduced
from the weak version. The idea is to use an infinite descent argument based on the ‘height’
of points.

Heights on Pn
K and elliptic curves

Definition 2.3. Let K be a number field and take a point x = [x0 : x1 : · · · : xn] ∈ Pn(K). Then
we define the heightHK(x) to be

HK(x) :=
∏
v

max
i

(|xi|v).

Here, we are taking the product over all places v, and the valuations are normalized so
that the product formula holds. Note that in the case ofK = Q, this recovers the definition of
taking themaximumabsolute value of x0, . . . , xn provided the xi are integerswith no nontrivial
common divisor. We may also define the absolute height for x ∈ Pn(Q) by

H(P ) := HK(P )1/[K:Q].

Finally, it will be useful to define the logarithmic height h(P ) = logH(P ). If f is a function to
P1, then we define

hf (P ) := logH(f(P )).

The height function hf (P ) is especially useful when f is an even function applied to an
elliptic curve; e.g., taking the x-coordinate. In this case, one proves that

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1), (3)

where O(1) depends only on the elliptic curve E and the function f . In other words, by the
parallelogram law, hf is close to giving a quadratic form on E(K). In fact, consider defining

ĥ(P ) =
1

deg(f)
lim
n→∞

4−nhf (2
nP ).

This is known as the canonical, or Néron-Tate height. It gives a canonical quadratic form

〈P,Q〉 := ĥ(P +Q)− ĥ(P )− ĥ(Q).

As important as theNéron-Tate height is, it is not strictly necessary for proving theMordell-
Weil theorem, which can be done by using hf (P ).

The descent argument

The Mordell-Weil theorem will directly follow from the weak version and a descent argument
if we show the height function hf (P ) satisfies the following properties.

1. For some constant c1 depending on E, f , and Q, we have

hf (P +Q) ≤ 2hf (P ) + c1

for P,Q ∈ E(K).

2. For some constant c1 depending on E and f , we have

hf (2P ) ≥ 4hf (P )− c2

for P ∈ E(K).
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3. For all constants c3, there are finitely many P ∈ E(K) with hf (P ) ≤ c3.

Indeed, assume these results and use the weak Mordell-Weil theorem to pick finite coset
representatives {P1, . . . , Pn} for E(K)/2E(K). Then for any P ∈ E(K), properties 1 and 2 al-
low us to write P as a linear combination of P1, . . . , Pn and another point with height bounded
by a constant independent of P . Then property 3 implies we can take finitely many points to
cover all points with such height, which together with P1, . . . , Pn must generate E(K).

In order to prove properties 1 and 2, one uses equation 3. The fact that hf acts similar
to a quadratic form with respect to elliptic curve addition, combined with some computation,
yields these properties.

Property 3 follows from Northcott’s finiteness theorem, which states that there are finitely
many points of Pn(Q) with bounded height and degree. To prove this, one first reduces to
the case of n = 1 via a simple bound. Then from the fact that the height of a point is the
same as that of its Galois conjugates, one shows a relation between the height of a point x
and the coefficients of its minimal polynomial. This shows that there are only finitely many
polynomials that can give rise to points with the prescribed heights and degrees, as desired.
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