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The Distinguishing Number of a Graph

Definition (Albertson, Collins, 1996)

Given a simple graph G, define the distinguishing number, D(G), to
be the smallest r for which there exists a labeling of the graph
φ : V (G)→ {1, 2, . . . , r} such that the only element of the
automorphism group of G that preserves the labels is the identity.

Example

C5: cycle graph on 5 vertices. Aut(C5) = D5, D(C5) = 3.
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The Distinguishing Number of a Group Action

Definition (Tymoczko, 2004)

Given a group Γ acting on a finite set X, define the distinguishing
number, DΓ(X), to be the least positive integer r for which there
exists a labeling φ : X → {1, 2, . . . , r} such that the only element of Γ
that preserves the labels is the identity.

Idea: Partition X into the orbits given by the action of Γ.

Theorem (Tymoczko, 2004)

If |Γ| is at most k! then DΓ(X) is at most k.
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Distinguishing numbers for Sn

Question (Tymoczko, 2004)

Are there faithful actions of Sn on a set X that have distinguishing
number n− 1 for arbitrarily large n?

Tymoczko [2004] gives an example for n = 4.

Construction (J.)

Take n ≥ 1, |X| = n+ 2. Let Sn act on X via all possible permutations
on the first n elements of X, and let it switch the last two iff it is an
odd permutation.

Theorem (J.)

This construction gives DSn(X) = n− 1, and furthermore, all
constructions have to “look like” this in a certain way.
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Generalization 1: The consumption poset

Definition (type)

Let |X| = n. Given a labeling φ of a set X, define the type of φ to be
the partition of n given by the multiplicity of the labels.

Definition (distinguishing partition)

Given Γ acting on X, a partition λ ` n is a distinguishing partition
if there exists a distinguishing labeling φ of X of type λ.

Definition (J.; consumes)

A subgroup H < Sn consumes a partition λ ` n if λ is a
distinguishing partition for H.

Fact: The distinguishing number of a group Γ acting on a set X is the
minimum length of a partition it consumes.
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Generalization 1: The consumption poset

Example

D5, taken as a subgroup of S5 acting on 5 elements, consumes the
partitions (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
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Generalization 1: The consumption poset

Definition (J.)

Let λ and µ be two partitions of n. We say λ ≥c µ if every subgroup
H ≤ Sn that consumes λ also consumes µ.

Recall the dominance order on partitions: Let λ and µ be partitions of
n with parts written in decreasing order. λ ≥ µ if and only if∑k

i=1 λi ≥
∑k

i=1 µi for all k.

Theorem (J.)

(Par(n),≥c) is a poset such that λ ≥c µ =⇒ λ ≥ µ.

The consumption order is equivalent to the dominance order for
n = 2, 3, 5, 7.

Question (J.)

For which n are the consumption ordering and dominance ordering
equivalent?
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Generalization 1: The consumption poset

Example (n = 4)
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Generalization 2: Partitioning Cartesian powers

Theme: Refining subgroups of Sn through restricting them to their
elements that preserve a partition.

Question

Which subgroups of Sn can we obtain in this way?

Example

If we require our elements to preserve some partition of X, we can only
get groups of the form Sλ1 × Sλ2 × · · · × Sλk , where the λi correspond
to a set partition of X.

Can we get anything interesting by looking at partitions of other
things?
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Generalization 2: Partitioning Cartesian powers

Idea: Consider partitioning Xk instead.

Theorem (J.)

The subgroups of Sn obtainable by restricting to partitions of Xk are
precisely the automorphism groups of k-uniform hypergraphs.

Theorem (J.)

Every subgroup of Sn can be obtained in this manner through a
partition of Xn−1.

Question (J.)

Given a subgroup H < Sn, what is the minimal k for which H can be
achieved through a partition of Xk?
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Generalization 3: Distinguishing symmetric functions

Idea: Count how many distinguishing labelings there are, not just
whether one exists.

Definition (J.)

Let X be a set of size n carrying an action of the group G. Let fX be
the polynomial function such that fX(m) is the number of
distinguishing labelings of X from the set {1, 2, . . . ,m}. Then fX is the
distinguishing polynomial of X.

Theorem (J.)

Let ai be the number of distinguishing labelings of X using precisely i
colors for 1 ≤ i ≤ n. Then fX(x) =

∑n
i=1 ai

(
x
i

)
. In particular, fX is a

polynomial of degree n.

The distinguishing number is the smallest positive integer that is not a
root of the distinguishing polynomial.
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Generalization 3: Distinguishing symmetric functions
Idea: Generalize further, à la the chromatic symmetric function
extending the chromatic polynomial

Definition

A symmetric function is an element of the polynomial ring
R[x1, x2, . . .] in infinitely many variables that is invariant under the
transposition of any two variables.

Definition (J.)

Let
YX =

∑
(i1,i2,...,in) is a distinguishing labeling for X

xi1xi2 · · ·xin .

We call YX the distinguishing symmetric function of X.

YX is a symmetric function, and when evaluated with
x1 = x2 = · · · = xm = 1 and with other variables 0, gives the value of
fX(m).
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Idea: Generalize further, à la the chromatic symmetric function
extending the chromatic polynomial

Definition

A symmetric function is an element of the polynomial ring
R[x1, x2, . . .] in infinitely many variables that is invariant under the
transposition of any two variables.

Definition (J.)

Let
YX =

∑
(i1,i2,...,in) is a distinguishing labeling for X

xi1xi2 · · ·xin .

We call YX the distinguishing symmetric function of X.

YX is a symmetric function, and when evaluated with
x1 = x2 = · · · = xm = 1 and with other variables 0, gives the value of
fX(m).

Caleb Ji (WashU) Distinguishing Numbers 12 / 14



Generalization 3: Distinguishing symmetric functions
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Generalization 3: Distinguishing symmetric functions

Definition

A symmetric function is Schur-positive if, when expanded in the
Schur basis, all the coefficients are positive.

Question (J.)

When is the distinguishing symmetric function associated to a graph
Schur-positive?

For all graphs up through 7 vertices, the distinguishing symmetric
function is always Schur-positive, except for four exceptions which all
occur when the graph has 6 vertices.

(
⋃
λi
Kλi) = eλ when λ has distinct parts.
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