## Distinguishing Numbers

Caleb Ji

Washington University in St. Louis

April 7, 2019

Caleb Ji (WashU)

Distinguishing Numbers 1 / 14

## The Distinguishing Number of a Graph

#### Definition (Albertson, Collins, 1996)

Given a simple graph G, define the **distinguishing number**, D(G), to be the smallest r for which there exists a labeling of the graph  $\phi: V(G) \to \{1, 2, \ldots, r\}$  such that the only element of the automorphism group of G that preserves the labels is the identity.

## The Distinguishing Number of a Graph

#### Definition (Albertson, Collins, 1996)

Given a simple graph G, define the **distinguishing number**, D(G), to be the smallest r for which there exists a labeling of the graph  $\phi: V(G) \to \{1, 2, \ldots, r\}$  such that the only element of the automorphism group of G that preserves the labels is the identity.

#### Example

 $C_5$ : cycle graph on 5 vertices. Aut $(C_5) = D_5$ ,  $D(C_5) = 3$ .



Caleb Ji (WashU)

## The Distinguishing Number of a Group Action

#### Definition (Tymoczko, 2004)

Given a group  $\Gamma$  acting on a finite set X, define the **distinguishing number**,  $D_{\Gamma}(X)$ , to be the least positive integer r for which there exists a labeling  $\phi : X \to \{1, 2, ..., r\}$  such that the only element of  $\Gamma$ that preserves the labels is the identity.

# The Distinguishing Number of a Group Action

#### Definition (Tymoczko, 2004)

Given a group  $\Gamma$  acting on a finite set X, define the **distinguishing number**,  $D_{\Gamma}(X)$ , to be the least positive integer r for which there exists a labeling  $\phi : X \to \{1, 2, ..., r\}$  such that the only element of  $\Gamma$ that preserves the labels is the identity.

**Idea:** Partition X into the orbits given by the action of  $\Gamma$ .

## The Distinguishing Number of a Group Action

#### Definition (Tymoczko, 2004)

Given a group  $\Gamma$  acting on a finite set X, define the **distinguishing number**,  $D_{\Gamma}(X)$ , to be the least positive integer r for which there exists a labeling  $\phi : X \to \{1, 2, ..., r\}$  such that the only element of  $\Gamma$ that preserves the labels is the identity.

**Idea:** Partition X into the orbits given by the action of  $\Gamma$ .

Theorem (Tymoczko, 2004)

If  $|\Gamma|$  is at most k! then  $D_{\Gamma}(X)$  is at most k.

#### Question (Tymoczko, 2004)

Are there faithful actions of  $S_n$  on a set X that have distinguishing number n-1 for arbitrarily large n?

#### Question (Tymoczko, 2004)

Are there faithful actions of  $S_n$  on a set X that have distinguishing number n-1 for arbitrarily large n?

Tymoczko [2004] gives an example for n = 4.

#### Question (Tymoczko, 2004)

Are there faithful actions of  $S_n$  on a set X that have distinguishing number n-1 for arbitrarily large n?

Tymoczko [2004] gives an example for n = 4.

### Construction (J.)

Take  $n \ge 1$ , |X| = n + 2. Let  $S_n$  act on X via all possible permutations on the first n elements of X, and let it switch the last two iff it is an odd permutation.

### Question (Tymoczko, 2004)

Are there faithful actions of  $S_n$  on a set X that have distinguishing number n-1 for arbitrarily large n?

Tymoczko [2004] gives an example for n = 4.

#### Construction (J.)

Take  $n \ge 1$ , |X| = n + 2. Let  $S_n$  act on X via all possible permutations on the first n elements of X, and let it switch the last two iff it is an odd permutation.

#### Theorem (J.)

This construction gives  $D_{S_n}(X) = n - 1$ , and furthermore, all constructions have to "look like" this in a certain way.

Definition (type)

Let |X| = n. Given a labeling  $\phi$  of a set X, define the **type** of  $\phi$  to be the partition of n given by the multiplicity of the labels.

### Definition (type)

Let |X| = n. Given a labeling  $\phi$  of a set X, define the **type** of  $\phi$  to be the partition of n given by the multiplicity of the labels.

### Definition (distinguishing partition)

Given  $\Gamma$  acting on X, a partition  $\lambda \vdash n$  is a **distinguishing partition** if there exists a distinguishing labeling  $\phi$  of X of type  $\lambda$ .

### Definition (type)

Let |X| = n. Given a labeling  $\phi$  of a set X, define the **type** of  $\phi$  to be the partition of n given by the multiplicity of the labels.

### Definition (distinguishing partition)

Given  $\Gamma$  acting on X, a partition  $\lambda \vdash n$  is a **distinguishing partition** if there exists a distinguishing labeling  $\phi$  of X of type  $\lambda$ .

### Definition (J.; consumes)

A subgroup  $H < S_n$  consumes a partition  $\lambda \vdash n$  if  $\lambda$  is a distinguishing partition for H.

### Definition (type)

Let |X| = n. Given a labeling  $\phi$  of a set X, define the **type** of  $\phi$  to be the partition of n given by the multiplicity of the labels.

### Definition (distinguishing partition)

Given  $\Gamma$  acting on X, a partition  $\lambda \vdash n$  is a **distinguishing partition** if there exists a distinguishing labeling  $\phi$  of X of type  $\lambda$ .

### Definition (J.; consumes)

A subgroup  $H < S_n$  consumes a partition  $\lambda \vdash n$  if  $\lambda$  is a distinguishing partition for H.

**Fact:** The distinguishing number of a group  $\Gamma$  acting on a set X is the minimum length of a partition it consumes.

#### Example

 $D_5$ , taken as a subgroup of  $S_5$  acting on 5 elements, consumes the partitions (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).



Definition (J.)

Let  $\lambda$  and  $\mu$  be two partitions of n. We say  $\lambda \geq_c \mu$  if every subgroup  $H \leq S_n$  that consumes  $\lambda$  also consumes  $\mu$ .

### Definition (J.)

Let  $\lambda$  and  $\mu$  be two partitions of n. We say  $\lambda \geq_c \mu$  if every subgroup  $H \leq S_n$  that consumes  $\lambda$  also consumes  $\mu$ .

Recall the dominance order on partitions: Let  $\lambda$  and  $\mu$  be partitions of n with parts written in decreasing order.  $\lambda \geq \mu$  if and only if  $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} \mu_i$  for all k.

### Definition (J.)

Let  $\lambda$  and  $\mu$  be two partitions of n. We say  $\lambda \geq_c \mu$  if every subgroup  $H \leq S_n$  that consumes  $\lambda$  also consumes  $\mu$ .

Recall the dominance order on partitions: Let  $\lambda$  and  $\mu$  be partitions of n with parts written in decreasing order.  $\lambda \geq \mu$  if and only if  $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} \mu_i$  for all k.

Theorem (J.)

 $(\operatorname{Par}(n), \geq_c)$  is a poset such that  $\lambda \geq_c \mu \implies \lambda \geq \mu$ .

### Definition (J.)

Let  $\lambda$  and  $\mu$  be two partitions of n. We say  $\lambda \geq_c \mu$  if every subgroup  $H \leq S_n$  that consumes  $\lambda$  also consumes  $\mu$ .

Recall the dominance order on partitions: Let  $\lambda$  and  $\mu$  be partitions of n with parts written in decreasing order.  $\lambda \geq \mu$  if and only if  $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} \mu_i$  for all k.

#### Theorem (J.)

 $(\operatorname{Par}(n), \geq_c)$  is a poset such that  $\lambda \geq_c \mu \implies \lambda \geq \mu$ .

The consumption order is equivalent to the dominance order for n = 2, 3, 5, 7.

### Definition (J.)

Let  $\lambda$  and  $\mu$  be two partitions of n. We say  $\lambda \geq_c \mu$  if every subgroup  $H \leq S_n$  that consumes  $\lambda$  also consumes  $\mu$ .

Recall the dominance order on partitions: Let  $\lambda$  and  $\mu$  be partitions of n with parts written in decreasing order.  $\lambda \geq \mu$  if and only if  $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} \mu_i$  for all k.

#### Theorem (J.)

 $(\operatorname{Par}(n), \geq_c)$  is a poset such that  $\lambda \geq_c \mu \implies \lambda \geq \mu$ .

The consumption order is equivalent to the dominance order for n = 2, 3, 5, 7.

#### Question (J.)

For which n are the consumption ordering and dominance ordering equivalent?

Caleb Ji (WashU)

Example (n = 4)



Caleb Ji (WashU)

Theme: Refining subgroups of  $S_n$  through restricting them to their elements that preserve a partition.

Theme: Refining subgroups of  $S_n$  through restricting them to their elements that preserve a partition.

Question

Which subgroups of  $S_n$  can we obtain in this way?

Theme: Refining subgroups of  $S_n$  through restricting them to their elements that preserve a partition.

Question

Which subgroups of  $S_n$  can we obtain in this way?

### Example

If we require our elements to preserve some partition of X, we can only get groups of the form  $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$ , where the  $\lambda_i$  correspond to a set partition of X.

Theme: Refining subgroups of  $S_n$  through restricting them to their elements that preserve a partition.

Question

Which subgroups of  $S_n$  can we obtain in this way?

### Example

If we require our elements to preserve some partition of X, we can only get groups of the form  $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$ , where the  $\lambda_i$  correspond to a set partition of X.

Can we get anything interesting by looking at partitions of other things?

**Idea:** Consider partitioning  $X^k$  instead.

### **Idea:** Consider partitioning $X^k$ instead.

Theorem (J.)

The subgroups of  $S_n$  obtainable by restricting to partitions of  $X^k$  are precisely the automorphism groups of k-uniform hypergraphs.

### **Idea:** Consider partitioning $X^k$ instead.

### Theorem (J.)

The subgroups of  $S_n$  obtainable by restricting to partitions of  $X^k$  are precisely the automorphism groups of k-uniform hypergraphs.

### Theorem (J.)

Every subgroup of  $S_n$  can be obtained in this manner through a partition of  $X^{n-1}$ .

### **Idea:** Consider partitioning $X^k$ instead.

### Theorem (J.)

The subgroups of  $S_n$  obtainable by restricting to partitions of  $X^k$  are precisely the automorphism groups of k-uniform hypergraphs.

### Theorem (J.)

Every subgroup of  $S_n$  can be obtained in this manner through a partition of  $X^{n-1}$ .

### Question (J.)

Given a subgroup  $H < S_n$ , what is the minimal k for which H can be achieved through a partition of  $X^k$ ?

**Idea:** Count how many distinguishing labelings there are, not just whether one exists.

**Idea:** Count how many distinguishing labelings there are, not just whether one exists.

### Definition (J.)

Let X be a set of size n carrying an action of the group G. Let  $f_X$  be the polynomial function such that  $f_X(m)$  is the number of distinguishing labelings of X from the set  $\{1, 2, ..., m\}$ . Then  $f_X$  is the **distinguishing polynomial** of X.

**Idea:** Count how many distinguishing labelings there are, not just whether one exists.

### Definition (J.)

Let X be a set of size n carrying an action of the group G. Let  $f_X$  be the polynomial function such that  $f_X(m)$  is the number of distinguishing labelings of X from the set  $\{1, 2, ..., m\}$ . Then  $f_X$  is the **distinguishing polynomial** of X.

#### Theorem (J.)

Let  $a_i$  be the number of distinguishing labelings of X using precisely i colors for  $1 \le i \le n$ . Then  $f_X(x) = \sum_{i=1}^n a_i {x \choose i}$ . In particular,  $f_X$  is a polynomial of degree n.

**Idea:** Count how many distinguishing labelings there are, not just whether one exists.

### Definition (J.)

Let X be a set of size n carrying an action of the group G. Let  $f_X$  be the polynomial function such that  $f_X(m)$  is the number of distinguishing labelings of X from the set  $\{1, 2, ..., m\}$ . Then  $f_X$  is the **distinguishing polynomial** of X.

#### Theorem (J.)

Let  $a_i$  be the number of distinguishing labelings of X using precisely i colors for  $1 \le i \le n$ . Then  $f_X(x) = \sum_{i=1}^n a_i {x \choose i}$ . In particular,  $f_X$  is a polynomial of degree n.

The distinguishing number is the smallest positive integer that is not a root of the distinguishing polynomial.

**Idea:** Generalize further, à la the chromatic symmetric function extending the chromatic polynomial

#### Definition

A symmetric function is an element of the polynomial ring  $R[x_1, x_2, \ldots]$  in infinitely many variables that is invariant under the transposition of any two variables.

**Idea:** Generalize further, à la the chromatic symmetric function extending the chromatic polynomial

#### Definition

A symmetric function is an element of the polynomial ring  $R[x_1, x_2, \ldots]$  in infinitely many variables that is invariant under the transposition of any two variables.

Definition (J.) Let  $Y_X = \sum_{(i_1, i_2, \dots, i_n) \text{ is a distinguishing labeling for } X} x_{i_1} x_{i_2} \cdots x_{i_n}.$ We call  $Y_X$  the distinguishing symmetric function of X.

**Idea:** Generalize further, à la the chromatic symmetric function extending the chromatic polynomial

### Definition

A symmetric function is an element of the polynomial ring  $R[x_1, x_2, \ldots]$  in infinitely many variables that is invariant under the transposition of any two variables.

Definition (J.) Let  $Y_X = \sum_{(i_1, i_2, \dots, i_n) \text{ is a distinguishing labeling for } X} x_{i_1} x_{i_2} \cdots x_{i_n}.$ We call  $Y_X$  the **distinguishing symmetric function of** X.  $Y_X$  is a symmetric function, and when evaluated with

 $x_1 = x_2 = \cdots = x_m = 1$  and with other variables 0, gives the value of  $f_X(m)$ .

#### Definition

A symmetric function is **Schur-positive** if, when expanded in the Schur basis, all the coefficients are positive.

#### Definition

A symmetric function is **Schur-positive** if, when expanded in the Schur basis, all the coefficients are positive.

### Question (J.)

When is the distinguishing symmetric function associated to a graph Schur-positive?

#### Definition

A symmetric function is **Schur-positive** if, when expanded in the Schur basis, all the coefficients are positive.

### Question (J.)

When is the distinguishing symmetric function associated to a graph Schur-positive?

For all graphs up through 7 vertices, the distinguishing symmetric function is always Schur-positive, except for four exceptions which all occur when the graph has 6 vertices.

#### Definition

A symmetric function is **Schur-positive** if, when expanded in the Schur basis, all the coefficients are positive.

### Question (J.)

When is the distinguishing symmetric function associated to a graph Schur-positive?

For all graphs up through 7 vertices, the distinguishing symmetric function is always Schur-positive, except for four exceptions which all occur when the graph has 6 vertices.

• 
$$(\bigcup_{\lambda_i} K_{\lambda_i}) = e_{\lambda}$$
 when  $\lambda$  has distinct parts.

### Thanks!

- Joe Gallian, for suggesting this project and running the Duluth REU where this research was done
- My advisors Colin Defant, Levent Alpoge, and Aaron Berger