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1 Overview

It is a famous fact that complex algebraic curves and compact Riemann surfaces are equiva-
lent notions. Here we will describe three proofs, in increasing generality, that any compact
Riemann surface X is algebraic. All of them require some nontrivial analytical input. The
first proof uses the existence of a nonconstant meromorphic function onX and to giveX the
structure of an algebraic curve. The second is to use the Riemann-Roch theorem to embed
X holomorphically in projective space, then use Chow’s theorem to deduce algebraicity. The
third is to use the Kodaira embedding theorem, which generalizes in a suitable way to higher
dimensions. Then we show how all these curves can be realized in P3, or even P2 are allowed,
and speculate on further questions.

First, in the opposite direction, taking the closed points of a curve C (complete and non-
singular) over C gives a Riemann surface. Indeed, let us assume for now that C is embedded
in projective space; we will see later how this can be done. Then by [4], Theorem 8.17, C is a
local complete intersection. Then by the implicit function theorem, each of the standard open
coverings Ui has some chart given by a coordinate of the form

xj

xi
, and it is clear that the tran-

sition maps are holomorphic.

Furthermore, we should also mention the Normalization theorem, which states that com-
pact Riemann surfaces correspond to irreducible plane curves with at worst double points. The
Riemann surface is obtained by the normalization of the plane curve.

2 Function field proof

Analysis

The first step is to show the existence of a nonconstant meromorphic function on X. There
are many ways to do this; one proof is given in [2], chapter 14. In fact, we the meromorphic
functions on X separate points, and extend this in the next section to the full Riemann-Roch
theorem. Let O be the sheaf of holomorphic functions onX. The key statement is the follow-
ing.

Theorem 2.1. Given Y1 ⊂ Y2 open subsets of a Riemann surfaceX with Y2 containing the closure
of Y1, the image of the restriction map

H1(Y2,O)→ H1(Y1,O)

is finite dimensional.

We will simply state some of the inputs to this theorem. First, one needs a certain general-
ization of the Schwarz lemma, which gives L2 functions whose norm on a subset of a domain
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is sufficiently small in comparison to their norm on the whole domain. Then one uses some
functional analysis with this to show that a suitable restriction of H1 of some cover to some
refinement has finite dimensional image. Then recalling that H1 with respect to a covering
with noH1 on each individual piece gives CechH1, the theorem follows.

An easy corollary is that on a compact Riemann surface, dimH1(X,O) is finite; of course
it is the genus ofX. But what we are looking for is the following corollary.

Corollary 2.2. The meromorphic functions on a compact Riemann surface separate points.

For this, it suffices to show that for every point x ∈ X, there is a meromorphic function
with a pole at a and holomorphic elsewhere. To prove this, cover X with U1: a coordinate
neighborhood of x andU2: X\{x}. SinceH1 of this cover always injects into CechH1, we know
that it is finite dimensional by the theorem. Thus the cocycles z−1, z−2, · · · , z−k are linearly
dependent for some k; i.e. some combination of them agrees with f1 − f2 for f1 ∈ O(U1) and
O(U2). This immediately gives the desired construction.

The rest

Now take some nonconstant meromorphic f : X → P1. If f has degree d, then it realizesX as
a finite ramified cover over P1 of degree d. Then one can show [1], 11.1

[C(X) : C(t)] = d.

From here, we recognize that the way to proceed is to show that the category of compact
connected Riemann surfaces with non-constant holomorphic maps is equivalent to the cate-
gory of fields of transcendence degree 1 over C with field inclusions. This is done in essen-
tially the same way as for algebraic curves – see [1], 11.1 for the Riemann surface case and
[4], I.6. for the curve case. The upshot is that we associate to each function field an ‘abstract’
curve/Riemann surface where the points are the valuations; note that these are naturally in
bijection with the points of the curve/Riemann surface we started with. Then we define the
curve/Riemann surface structure on these valuations and prove the equivalence of categories.
Since going fromcurve to functionfield toRiemann surface gives the closed points of the curve,
we realize each Riemann surface as a curve.

3 Embedding in projective space

Riemann-Roch

We begin by proving the Riemann-Roch theorem for Riemann surfaces. First, we recall how it
is proven for curves. For a smooth projective curve C of genus g and canonical divisor K, we
wish to show that for a divisorD, we have

l(D)− l(K −D) = degD − g + 1.

Since Serre duality identifies the vector spacesH0(C,ωC⊗L(−D)) andH1(X,L(D)), it suffices
to show that χ(L(D)) = degD−g+1. This is done by induction. The base case follows becuase
dimH1(X,L(D)) = g. Then for any point P , we have an exact sequence coming from its ideal
sheaf

0→ L(−P )→ OC → CP → 0,

which gives the exact sequence

0→ L(D)→ L(D + P )→ CP .
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Taking Euler characteristics gives the inductive step.

What changes must be made for compact Riemann surfaces? Of course, if we assume that
they were algebraic and that their meromorphic functions were algebraic, nothing would need
to be changed. We don’t do that here and instead follow the same argument, replacing the ob-
jects and their names with their analytical counterparts. We need an exact sequence of sheaves

0→ OD → OD+P → CP → 0.

Indeed, we can construct the lastmap by taking the appropriate Laurent coefficient overU 3 P .
Then the same results follow through to show

dimH0(X,O(D))− dimH1(X,OD) = degD − g + 1.

We would like to replace dimH1(X,OD) with dimH0(X,Ω−D). This is of course Serre duality
for compact Riemann surfaces. It is proven by showing that the composition

H0(OD, X)×H1(Ω−D, X)→ H1(X,Ω)→ C

given by (f, ω) 7→ fω and the residue map is a perfect pairing.

The rest

Next, we construct an embedding of X into Pn. Algebraically, this is done in [4], IV.3. Briefly,
recall that an ample divisor gives rise to an embedding in Pn, while a divisor that gives rise
to a base-point free linear system gives rise to some map to Pn. Being base-point free means
that there are no points P for which the natural embedding |D − P | ↪→ |D| is surjective; by
Riemann-Roch this is equivalent to dim |D − P | = dim |D| − 1. Then by Riemann-Roch again,
we have degK = 2g − 2, and so if degD ≥ 2g, then |D| is base-point free.

But we are after an embedding in Pn, so we use the condition that we obtain an embedding
if and only if |D| separates points and tangent vectors. This is seen to be equivalent to requir-
ing that dim |D − PQ| = dim |D| − 2, so by a similar argument to the above, if degD ≥ 2g + 1,
thenD is very ample.

Now the analytic case is similar. If degD ≥ 2g + 1, then we take a basis of H0(X,OD),
which give a map into Pn. Geometrically, an embedding is an injective immersion, and we use
the Riemann-Roch theorem to show that this is the case.

In fact, every curve, or Riemann surface, can be embedded into P3. Indeed, take X ⊂ Pn

and consider projecting down to Pn−1 from some pointO. This is the map to Pn−1 given by the
linear system cut out by hyperplanes passing through O. This is an embedding if it separates
points an tangent vectors: this means that O must not be on any line passing through two
(possibly the same) points of X. Such points make up a variety of dimension at most 3, so if
n ≥ 3, we can keep projecting down until we get to P3. If we try to go further to P2, then we
may get double points.

So we have an embedding X → Pn (where we can take n = 3) by meromorphic sections
f0, . . . , fn, and the quotient of each of these (say by f0) is a meromorphic function gi. Then
we use a fact that we glossed over in the previous section; namely, that any two meromorphic
functions are algebraically dependent. Indeed, we can directly construct a polynomial relat-
ing them using some symmetric polynomials, based on the fact that outside some ramification
points, a meromorphic function of degree d gives a degree d covering of P1. ThenX is cut out
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by these equations, which relate the ratios of the coordinates xi/x0 of Pn. One can show that
these are irreducible, from which one concludes that the variety cut out by all of them is also
irreducible. We have an embedding from X onto this variety, and since X is compact the im-
age must be surjective onto an irreducible component, so it is indeed surjective. Thus these
equations giveX as a projective variety.

It is worth mentioning that what we have just discussed is essentially a special case of
Chow’s theorem, which is itself a special case of GAGA. Chow’s theorem states that analytic
subvarieties of projective space are algebraic, and that in fact all meromorphic functions on a
projective variety are rational.

4 Kodaira embedding theorem

This is a generalization to higher dimensions. When is a compact complex manifold X alge-
braic? One answer is when it is Kähler and Moishezon, where the latter condition means that
the transcendence degree of its functionfield is equal to iits owndimension. Another, whichwe
will describe a bit more, is when it is Kähler with integral Kähler form. Really, what these prove
is thatX can be embedded in projective space. Then one uses the proper mapping theorem or
the holomorphic constant rank theorem (it does seem to be glossed over in the literature!) to
show that this realizes X as an analytic subvariety of projective space. Then Chow’s theorem
states thatX is algebraic. For a proof of Chow’s theorem, see [3], Section 1.3. We only give the
basic ideas, and everything here is taken from [3]. See also [5].

4.1 Basic notions

Recall that a Kähler manifold is a complex manifold with a Hermitian metric h giving rise to
a closed non-degenerate 2-form ω. Now we can describe ampleness in terms of positivity, an
analytic condition of line bundles.

First, let E → M be a Hermitian vector bundle with a connection D. Then given a frame
e1, . . . , en for E, we can write Dei =

∑
j θijej . Then θij is the associated connection matrix.

There is a canonical connection D compatible with the metric and the Hermitian structure,
the Chern connection. Writing

D2ei =
∑
j

Θij ⊗ ej ,

theΘij comprise the curvaturematrix ofD for the given frame. TheCartan structure equation
states that

Θ = dθ − θ ∧ θ.

The curvature matrix is a Hermitian matrix of (1, 1)-forms.

In the case of the holomorphic tangent bundle T ′M , a Hermitian metric is just called a
Hermitian metric onM itself. In this case, such a metric is a (1, 1)-form after multiplying by i.
A Hermitian complex manifold is called Kähler if the associated (1, 1)-form is closed.

Given a line bundleL, its first Chern class c1(L) ∈ H2(M ;Z) (or inH2
dR(M)) may be defined

as the image of its representative in the connecting homomorphism

H1(M,O∗)→ H2(M,Z)
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arising from the exponential sequence. We can also interpret the Chern class in terms of the
curvature form. Indeed, for line bundles the curvature matrix is 1× 1 and the transition func-
tions are trivial, so we may speak ofΘ as the curvature (2-)form ofE. Then one may show that
in fact,

c1(L) =

[
i

2π
Θ

]
∈ H2

dR(M).

Now recall that a (1, 1)−form ω is called positive if all its associated Hermitian forms on
holomorphic tangent spaces T ′z(M) are positive definite. That is, we have

i · 〈ω(z), v ∧ v〉 > 0.

Definition 4.1. A holomorphic line bundle L→M is called positive if there is a Hermitian metric
on L whose curvature form Θ is positive.

Recall that whatever Hermitian metric we take on L, the resulting curvature form is going
to represent the same cohomology class, namely the Chern class c1(L). A converse statement
holds: if ω is a (1, 1) form representing c1(L), then there is a Hermitian metric on L giving ω
as the curvature form. This means that L is positive if and only if c1(L) can be represented by
a positive form inH2

dR(M).

4.2 The Kodaira vanishing and embedding theorems

We now state the Kodaira vanishing theorem.

Theorem 4.2 (Kodaira vanishing). Let M be a compact Kähler manifold and let L → M be a
positive line bundle. Then

Hp(M,Ωq(L)) = 0 for p+ q > n.

The proof involves harmonic theory. One application is to the Lefschetz hyperplane the-
orem, which states that if V ⊂ M is a hypersurface of an ndimensional compact complex
manifold with [V ] positive (e.g. a hyperplane section), then Hq(V,Q) → Hq(M,Q) is an iso-
morphism for q ≤ n− 2 and injective for q = n− 1.

Anyways, we are still interested in embedding complex manifolds into projective space.
This positivity condition is the analog of ampleness in algebraic geometry.

Theorem 4.3 (Kodaira embedding theorem). LetM be a compact complex manifold and let L→
M be a positive line bundle. Then for sufficiently large k, we have that the complete linear system
of Lk defines an embedding into PN .

Another way of stating this is the following, which applies to compact Riemann surfaces.

Theorem 4.4 (Kodaira embedding theorem restated). A compact complex manifoldM is a com-
plex algebraic variety if and only if it has a closed, positive (1, 1)-form ω whose cohomology class
[ω] is rational.

Indeed, a complex projective space possesses such a Kähler form which can be used in one
direction. In the other, we have [kω] ∈ H2(M ;Z) for some k. Then looking at the exponential
exact sequence, we obtain a line bundle L with c1(L) = [kω]. Then L will be positive.

To prove the embedding theorem, one can try to apply the vanishing theorems to a coho-
mological interpretation of the condition of separating poitns and tangent vectors. This does
not quite directly work, because we don’t directly have enough divisors if dimM > 1. This can
be solved by blowing up.
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