
The Atiyah-Hirzebruch Spectral Sequence

Caleb Ji

This paper is an expository account of the Atiyah-Hirzebruch spectral sequence, which re-
lates singular cohomology to generalized cohomology theories. In Section 1, we state the spec-
tral sequence and make some remarks on variants of it. In Section 2, we construct the spectral
sequence. In Section 3, we apply it to K-theory and see how Bott periodicity simplifies it. Then
we use it along with other methods to compute the K-groups of various spaces. Some of these
exampleswill enhance our understanding of the differentials of theAtiyah-Hirzebruch spectral
sequence.
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1 Statement of the AHSS

1.1 Generalized cohomology theories

We begin by recalling the definition of reduced generalized cohomology theories.

Definition 1.1. A reduced generalized cohomology theory is a functor Ẽ∗ from pointed spaces
to graded abelian groups satisfying the following properties.

1. Ẽ∗ is homotopy invariant.

2. There is a natural isomorphism Ẽ∗X ∼= Ẽ∗+1ΣX.

3. If A ↪→ X is an inclusion of pointed spaces, there’s an exact sequence

Ẽ∗(X/A)→ Ẽ∗(X)→ Ẽ∗(A)
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4. Ẽ∗ takes coproducts to products.

Given an inclusion A ↪→ X, we can continue it to a cofiber sequence:

A ↪→ X → X/A ∼= X ∪ CA→ ΣA→ ΣX → · · · .

By applying the cohomology theory Ẽ∗, the given properties yield the following long exact
sequence.

· · · → En−1(A)→ En(X/A)→ En(X)→ En(A)→ En+1(X/A)→ · · · .

There is a slightly different set of axioms for generalized cohomology theories. Note
that by property 3, the reduced cohomology of a point is trivial. Generalized cohomology the-
ories, which are defined on pairs, do not satisfy this. A key example we will be interested in
is K-theory; K-theory is a generalized cohomology theory and reduced K-theory is a reduced
generalized cohomology theory. One goes between the two in the following way.

Proposition 1.2. Given an unreduced cohomology theory E∗, we obtain a reduced cohomology
theory Ẽ∗ by setting

Ẽ∗(X,x) := E∗(X, {x}).

In the other direction, we can define

E∗(X,A) := Ẽ∗(X+ ∪ C(A+)).

Note that in the first definition, (X,x) is taken as a pointed space and (X, {x}) is taken as
a pair of spaces. For proofs, see the nLab [9]. In practice, the consequences of this we will use
are that E∗(X,A) = Ẽ∗(X/A) and that Ẽ∗(X) = ker(E∗(X)→ E∗(pt)).

The following lemma asserts that generalized cohomology theories behave like ordinary
cohomology when it comes to maps of spheres.

Lemma 1.3. Let Ẽ∗ be a generalized cohomology theory and let f : Sn → Sn be a continuous
map. Then the induced map

f∗ : Ẽ∗(Sn)→ Ẽ∗(Sn)

is multiplication by deg(f).

Proof. Recall that the homotopy class of f is completely determined by its degree. Thus for
each k, it suffices to prove the result for a single degree kmap. For k positive, first collapse the
complement of k open balls to a point. Then apply the identity map to each of the k spheres.
This gives a composition

Sp → ∨ki=1S
p → Sp

of degree k. Then applyingE∗ and using property 4 shows that f∗ is multiplication by k. Using
this result and composing with reflections yields the result for negative k as well.

1.2 Stating the AHSS

The goal of the final page

Let X be a finite CW-complex and let G∗ be a generalized cohomology theory1. Let G̃∗ =
ker(G∗(X)→ G∗(pt)) be the corresponding reduced theory. The natural topological filtration
ofX given by its CW-structure

pt = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

1The more common notation is E∗, but we will also be using this for the pages of the spectral sequence...
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induces a filtration on Gk(X):

0 = G̃kn(X) ⊂ G̃kn−1(X) ⊂ · · · ⊂ G̃k0(X) ⊂ G̃k−1(X) = G̃k(X),

where
G̃kp(x) := ker[G̃k(X)→ G̃k(Xr)].

Oftentimes, to make the fact that we are taking a filtration more evident, this is written as

0 = FnG̃
k(X) ⊂ Fn−1G̃k(X) ⊂ · · · ⊂ F0G̃

k(X) ⊂ F−1G̃k(X) = G̃k(X).

The spectral sequence we will construct will give us each quotient

G̃kp−1(X)/G̃kp(X) = Fp−1G̃
k(X)/FpG̃

k(X)

as the entry Ep,k−p∞ on the final page which the spectral sequence converges to.

Page 1

Intuitively speaking, we obtained the terms above by taking successive quotients of a filtration
of G̃n(X). The spectral sequence begins on the first page by essentially doing these steps in
reverse. Namely, we define

Er,n−r1 := Gn(Xr, Xr−1) ∼= G̃n(Xr/Xr−1).

NowXr/Xr−1 is nothing but awedge ofSr’s, and generalized cohomology theories sendwedges
to direct sums. Furthermore, the suspension isomorphism allows us to identify G̃n(Sr) with
G̃k−p(∗). This gives us the equality

Ep,k−p1 = G̃k(Xp/Xp−1) =
⊕
p−cells

G̃k(Sp) =
⊕
p−cells

G̃k−p(S0) =
⊕
r−cells

Gk−p(pt) = Cp(X,Gk−p(pt)).

Statement of the spectral sequence

Having defined and worked out the first page, we are now ready to state Atiyah-Hirzebruch
spectral sequence.

Theorem 1.4. [Atiyah-Hirzebruch spectral sequence] LetX be a finite CW-complex and letG∗ be
a generalized cohomology theory with reduced version G̃∗. Then there is a spectral sequence with
pages Ep,qk satisfying the following properties.

• Ep,q1 = Cp(X;Gq(∗)).

• Ep,q2 = H̃p(X;Gq(∗)).

• Ep,q∞ =
ker(G̃p+q(X)→ G̃p+q(Xp−1))

ker(G̃p+q(X)→ G̃p+q(Xp))
.

Remark. By reversing the arrows, one obtains a similar statement for homology.

Remark. According to Adams, this was “probably first invented by G. W. Whitehead" [1]; they
became folklore, and was first published by Atiyah and Hirzebruch [2].
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1.3 Variants and extensions

Let us comment on some further aspects of this spectral sequence. First, as stated the Atiyah-
Hirzebruch spectral sequence gives no information about themultiplicative structure of a gen-
eralized cohomology theoy, if it exists at all. For instance, when applied to K-theory it does
not give us the ring structure. Another generalized cohomology theory with a rings tructure
is given by bordism. In the case of the oriented bordism ringMSO∗, Gray figured out how to
determine the ring structure with the Atiyah-Hirzebruch sequence in [6].

As Atiyah andHirzebruch pointed out in the original paper [2], the Atiyah-Hirzebruch spec-
tral sequence can also be generalized to fiber bundles F ↪→ Y → X. In this case, the spectral
sequence is given by local coefficients:

Ep,q2
∼= Hp(X;Kq(F ))⇒ Kp+q(Y ).

Considering the trivial fibration Y = X yields the original spectral sequence. Moreover, by us-
ing singlar cohomology for the generalized cohomology theory, one obtains the Serre spectral
sequence.

Finally, we remark that there is an algebraic version of this sequence that relates motivic
cohomology to algebraic K-theory. Even the definition of these two theories is rather involved,
so it should not be surprising that this version of the spectral sequence, stated below, is sig-
nificantly more difficult.

Ep,q2 = Hp−q(X,Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X).

This was first established in 2002 by Suslin and Friedlander [5], building on earlier work by
Block and Lichtenbaum. For an introduction to motivic cohomology, we recommend Voevod-
sky’s lectures [10]. For a very distilled account, one may consult the author’s slides.

2 Construction of the AHSS

The goal of this subsection is to prove Theorem 1.4. We have already shown how the E1 page
is constructed. It remains to define the differentials and prove the claimed statements about
E2 and E∞.

2.1 Exact couples

We begin by reviewing the formalism of exact couples, which streamlines the computations.

Definition 2.1. An exact couple is an exact triangle of abelian groups of the following form.

D1 D1

E1

α

β1γ

One should think ofE1 has the first page of a spectral sequence. Let d1 = β1◦γ. By replacing
E1 with E2 := H(E1, d1),D1 withD2 := im(α), and β1 with β2 = β1 ◦ α−1, it is readily checked
that

D2 D2

E2

α

β2γ

4
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forms another exact couple, known as the derived couple of the first one. ThenE2 is the second
page of the spectral sequence, and we can iterate this process to obtain the remaining pages.

While this approach may seem quite abstract, it arises very naturally in the situation we
are considering. The basic idea is that our filtration

· · · ⊂ Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ · · ·

contains a lot of exact sequences that can be put into an exact couple. Indeed, begin by setting
D1 =

⊕
p,q G̃

p+q(Xp) andE1 =
⊕

p,q G̃
p+q(Xp/Xp−1) ∼= Cp(X;Gq(∗)). For each p, consider the

exact sequence

· · · β1−→ Gp+q(Xp, Xp−1)
γ−→ Gp+q(Xp)

α−→ Gp+q(Xp−1)
β1−→ Gp+q+1(Xp, Xp−1)

γ−→ · · · .

We see that we have indeed created an exact couple, with the initial maps simply being the
direct sum of all the long exact sequences associated to the pairs in the filtration. We are now
ready to compute the second page.

2.2 Page 2

Beforeworking outwhat the secondpageE2 looks like, we recall thatwehaveE
p,q
1 = Cp(X;Gq(∗))

and we want to show that Ep,q2 = Hp(X;Gq(∗)). This suggests that d2 should be the cellu-
lar differential, and this is indeed what we will prove. The key point of this computations is
Lemma 1.3, and the rest is (somewhat involved) diagram chasing.

We recall that we have defined d1 = β1 ◦ γ. To be explicit, we write this out.

· · · β1−→ G̃p+q−1(Xp/Xp−1)
γ−→G̃p+q−1(Xp)

α−→ G̃p+q−1(Xp−1)
β1−→ G̃p+q(Xp/Xp−1)

γ−→ · · ·

· · · β1−→ G̃p+q−1(Xp+1/Xp)
γ−→ G̃p+q−1(Xp+1)

α−→ G̃p+q−1(Xp)
β1−→G̃p+q(Xp+1/Xp)

γ−→ · · · .

LetDp+1
i andDp

j be the discs associated to any p+ 1-cell and p-cell. Recall that the matrix
of the cellular differential corresponding to these two cells is computed as the degree dij of the
composition

fij : ∂Dp+1
i

φi−→ Xp πj−→ Spj ,

where the secondmap is projection obtained by quotienting outside the p-cell. Wewill actually
factor this map and rename it as follows.

fij : ∂Dp+1
i

φi−→ Xp π−→ Xp/Xp−1 gj−→ Dp
j /∂D

p
j = Spj .

Our goal is to show that the ij component of the map

G̃p+q−1(Xp/Xp−1)
γ−→G̃p+q−1(Xp)

β1−→G̃p+q(Xp+1/Xp)

is indeed deg(fij). By Lemma 1.3, it suffices to show that the ij component of β1 ◦ γ is φ∗i ◦
π∗ ◦ g∗j . Let hi denote the inclusion D

p+1
i /∂Dp+1

i ↪→ Xp+1/Xp. Then we have the following
commutative diagram.

G̃p+q−1(Dp
j /∂D

p
j )

G̃p+q−1(Xp/Xp−1) G̃p+q−1(Xp) G̃p+q(Xp+1/Xp)

G̃p+q−1(∂Dp+1
i ) ∼= G̃p+q(Dp+1

i /∂Dp+1
i )

g∗j

γ=π∗ β1

h∗i
φ∗i
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Here, the horizontal arrows compose to d1, while the vertical arrows pick out the cells corre-
sponding toDp+1

i andDp
j . The commutativity of the lower triangle follows from the naturality

of the long exact sequences (recall that the isomorphism G̃n+1 ◦ Σ ∼= G̃n forms the long exact
sequence!). Thus we see that the ij component of d1 = β1 ◦ γ is indeed φ∗i ◦ π∗ ◦ g∗j , so by
Lemma 1.3 we have that d1 coincides with the cellular differential, as desired.

2.3 Page n and convergence

It remains to prove the convergence of our spectral sequence. For convenience, we recall the
goal.

Ep,q∞
?
=
Fr−1G̃

n(X)

FrG̃n(X)
:=

ker[G̃n(X)→ G̃n(Xr−1)]

ker[G̃n(X)→ G̃n(Xr)]
.

We begin by proving the following general statement about spectral sequences from exact
couples.

Proposition 2.2. In the exact couple given by Definition 2.1, for all n ≥ 1 we have

En+1 =
γ−1(αnD1)

β1(kerαn)

Proof. The proof is simply checking the definitions. For n = 1, we have d1 = β1 ◦ γ : E1 → E1.
Since im γ = kerα, this means that ker d1 = γ−1(αD). Similarly, im d1 = β1(kerα). Thus

E2 := H(E1, d1) =
γ−1(αD1)

β1(kerα)
.

Then one repeats this argument (with a little more care) for the inductive step going from En
to En+1.

In our case of ann-dimensional CW-complex, the filtration stabilizes atXn. Then for p > n,
the (p, q) position of E1 consists of Gp+q(Xn, Xn) = 0. Then for degree reasons, dr : Ep,qr →
Ep+r,q−r+1
r is trivial for r > n. Thus the spectral sequence stabilizes by page n+ 1, and by the

previous proposition we obtain the following expression for E∞. , Note for degree reasons [...]
Thus [...]

Proposition 2.3. LetX be an n-dimensional CW complex and let G̃∗ be a reduced generalized co-
homology theory. Consider the spectral sequence, constructed above, associated to the exact couple
whereD1 = ⊕p,qGp+q(Xp) and E1 =

⊕
p,q G

p+q(Xp, Xp−1) ∼= Cp(X;Gq(∗)). Then

E∞ =
γ−1(αnD)

β(kerαn)
.

We can finally prove convergence.

Proposition 2.4. Let p+ q = k. Given the setting of Proposition 2.3, we have

Ep,q∞
∼=
Fp−1G̃

k(X)

FpG̃k(X)
:=

ker[G̃k(X)→ G̃k(Xp−1)]

ker[G̃k(X)→ G̃n(Xp)]
.

Proof. We need to pick out the (p, q) position of the expression for E∞ given in Proposition
2.3. Since (restricted to the (p, q)-position) kerαn = Ep,q1 , we have

Ep,q∞ =
γ−1(imαn : G̃p+q(X)→ G̃p+q(Xp))

ker γ : G̃p+q(Xp/Xp−1)→ G̃p+q(Xp)
.

6
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The exact sequence
0→ ker γ → γ−1(imαn)

γ−→ imαn ∩ im γ → 0

shows that Ep,q∞ ∼= imαn ∩ im γ restricted to the (p, q) position as above. Next, using the fact
that im γ = kerα, we have another exact sequence

0→ kerαn: G̃p+q(X)→ G̃p+q(Xp))→ kerαn+1: G̃p+q(X)→ G̃p+q(Xp−1)→ im(αn)∩im γ → 0.

Thus Ep,q∞ ∼= imαn ∩ im γ ∼=
Fp−1G̃

k(X)

FpG̃k(X)
, as desired.

This completes the proof of Theorem 1.4.

3 AHSS for K-theory

3.1 The simplified spectral sequence

K-theorymay be themost well-known generalized cohomology theory. Here we consider com-
plex K-theory, so thatK(X) = K0(X) is the Grothendieck ring of the isomorphism classes of
complex vector bundles over X. When the Atiyah-Hirzebruch spectral sequence is applied to
K-theory, its statement is simplified because of Bott periodicity. We recall the version of this
theorem we will use.

Theorem 3.1 (Bott periodicity). There is a natural isomorphism

K̃(X) ∼= K̃(Σ2X).

For a proof, see [7], Chapter 2.

By Bott periodicity, there are only two groups to calculate: K̃0(X) and K̃1(X). We are of-
ten interested in statements in terms of K groups, rather than reduced K groups. These are
related by the equality Kn(X) = K̃n(X+), where X+ is X disjoint union with a point. Then
one checks that Ki(X) ∼= K̃0(X) ⊕ Z for i even and Ki(X) ∼= K̃1(X) for i odd. In particular,
Ki(pt) ∼= Z for i even andKi(pt) = 0 for i odd.

Let us now analyze what the Atiyah-Hirzebruch sequence becomes for unreduced K-theory.
Compared to reducedK-theory, we must add a copy of Z to each row. Doing this all on column
0 of the E2 page, we see that we can express E

p,q
2 as the unreduced cohomology H̃p(X;Kq(∗)).

Thus the E2 page of the spectral sequence looks like the following.

7
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... ... ... ...

0 0 0 0

H0(X;Z) H1(X;Z) H2(X;Z) H3(X;Z)

0 0 0 0

H0(X;Z) H1(X;Z) H2(X;Z) H3(X;Z)

... ... ... ...

Figure 1: E2-page

Moreover, the naturality of the isomorphism given by Bott periodicity implies that the dif-
ferentials as well as the rows are periodic. Clearly all the even differentials will be 0, and we
now know that the odd differentials are the same for each nonzero row. Therefore we may
compress the entire spectral sequence into one row, and we obtain the following simplified
statement.

Theorem 3.2 (Atiyah-Hirzebruch spectral sequence for K-theory). LetX be an n-dimensional
CW-complex. Then there is a spectral sequenceEpi with differentials d

p
i : Epi → Ep+ii satisfying the

following properties.

• Ep2 = Hp(X;Z).

• Epr+1 =
ker drp

im dp−rr

.

• Ep∞ =
ker(Kp(X)→ Kp(Xp−2))

ker(Kp(X)→ Kp(Xp))
.

Additionally, dpi = 0 for even i.

This statement, however, can feel strange toworkwith because of how the pages are defined
from the differentials. In fact, it may be easier to simply work with one row and remember that
the differentials go to the right by an odd number of terms. Then the filtration ofK(X) consists
of the even-indexed terms and the filtration ofK1(X) consists of the odd-indexed terms. One
may also prefer to use the unreduced version; the only difference is that it removes a factor of
Z from the 0th term so that one does not have to worry about any nonzero differentials coming
from that term. We will see some concrete examples in our computations in the next section.

3.2 Examples

Let us use the Atiyah-Hirzebruch spectral sequence to calculate some K-theory groups.

3.2.1 Σg

Let Σg be the real orientable surface of genus g.

8
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Proposition 3.3. We have

K0(Σg) ∼= Z2, K1(Σg) ∼= Z2g.

Proof. Recall that the integral cohomology of Σg is given by H0(Σg,Z) ∼= H2(Σg,Z) ∼= Z and
H1(Σg,Z) ∼= Z2g. Thus the spectral sequence only has three nonzero terms: Z,Z2g,Z. But the
first nonzero differential is already of degree 3, so we see that there are in fact no nonzero
differentials. Because Z is projective, there are no extension problems and the result follows.

3.2.2 CPn

Proposition 3.4. We have

K(CPn) ∼= Zn+1, K1(CPn) = 0.

Proof. The spectral sequence begins as follows.

Z 0 Z 0 · · · Z 0

However, each non-zero differential d2k+1 is of degree (2k+1,−2k) in the two-dimensional
version, which in this version is simply of degree 2k+1. Thus all differentials are 0, and because
Z is projective there are no extension issues and we haveK(CPn) ∼= Zn+1 as desired. The odd
terms in the spectral sequence are all 0, soK1(CPn) = 0.

Remark. We see from this computation that if a finite CW-complexX has no odd-degree coho-
mology, then for degree reasons the K-theory spectral sequence collapses on the second page.
This implies thatK(X) ∼= ⊕kHk(X;Z) andK1(X) = 0.

In this case we can go further and actually computeK(CPn) as a ring. To do this, we recall
a few fundamental facts aboutK-theory.

Define the Chern character ch : K(X)→ Heven(X;Q) first on vector bundles by

ch(ξ) =
∑

exi ,

where xi are the Chern roots of ξ. Then extend linearly; this gives a well-defined homomor-
phism ch : K(X)→ Heven(X;Q).

Proposition 3.5. After tensoring with Q, the Chern character induces an isomorphism

chQ : K(X)⊗Q
∼=−→

⊕
Heven(X;Q).

For a proof, see [4], 38.4. We will use the following corollary.

Corollary 3.6. The Chern character restricts to an isomorphism K̃(S2n)
∼=−→ H2n(S2n;Z) = Z ⊂

Q = H2n(S2n;Q).

This follows from induction and Bott periodicity; see [4], 39.2 for details.

The case of CP1 can be calculated by hand, but is also a special case of another version of
Bott periodicity.

Theorem 3.7 (Bott periodicity). There is an isomorphism of rings

K(X × S2) ∼= K(X)⊗ Z[ζ]/(ζ − 1)2.

Here, ζ is the pullback of the tautological bundle γ → CP1 ∼= S2.

9
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For a proof, see [7], Ch. 2. We will now calculate the ring structure ofK(CPn).

Proposition 3.8. Let γ = ζ − 1, where ζ is the line bundle over CPn obtained by pullback of the
tautological bundle. ThenK(CPn) ∼= Z[γ]/γn+1 as rings.

Proof. Let x ∈ H2(CPn;Z) be the generator corresponding to the Chern root of ζ. Then we
have

ch γ = ch ζ − 1 = ex − 1 = x+
x2

2
+ · · ·

and thus
ch γk = xk +

k

2
xk+1 + · · · .

Furthermore, since xn+1 = 0, we have γn+1 = 0. This computation shows that 1, γ, . . . , γn

are linearly independent in K(CPn). By Proposition 3.4, this means they generate K(CPn)
over Q. To show they generate it over Z, we use induction. It is true for CP1, so assume it is
true for CPn−1. Then for any

α = a0 + a1γ + · · ·+ anγ
n ∈ K(CPn),

we have that its restriction to CPn−1, which is just a0 + a1γ + · · ·+ an−1γ
n−1, must be in Z[γ].

It remains to show rn ∈ Z. Consider the portion of the long exact sequence

· · · → K(CPn,CPn−1)→ K(CPn)→ K(CPn−1)→ · · · .

Because rnγn ∈ K(CPn) gets sent to 0 ∈ K(CPn−1), it is the image of some element of
K(CPn,CPn−1) = K̃(S2n). By Corollary 3.6, such an element has an integral Chern class,
so rn ∈ Z as desired.

3.2.3 RPn

Recall that the reduced real cohomology ofRPn is 0 in odd degrees (and 0) andZ/2Z in positive
even degrees. Therefore, the reduced version of the spectral sequence begins as follows.

0 0 Z/2Z 0 · · · 0 Z/2Z (if n odd) Z

Again we have that all differentials are trivial because there is essentially no odd cohomol-
ogy. Thus we have that

K(RPn) ∼= Z⊕ K̃(RPn) = Z⊕G

where G is a group of order 2bn/2c, and K1(RPn) = 0 for even n and Z for odd n. The spectral
sequence alone will not determine G. Moreover, the ring structure has not been elucidated.
However, we at least know the group structure.

Proposition 3.9. We have
K(RPn) ∼= Z⊕ Z/2bn/2cZ.

The torsion part can be calculated through analyzing the embedding RP2m ↪→ CP2m and
using the calculation ofK(CPn). For complete details, see [4], 39.3.

Remark. The fact that K(RPn) ∼= Z ⊕ Z/2bn/2cZ means that its torsion part is different from
that of

⊕
Heven(RPn;Z), though they have the same order.
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3.2.4 RP2 × RP4

Thus far, all the differentials have been 0 in the examples we have considered. When X =
RP2×RP4, this is not the case. In fact, through the calculations done in this section we will be
able to determine the differential d3. To begin, we calculate the K-theory of this space using a
Künneth formula for K-theory, proven by Atiyah in [3].

Theorem 3.10. Let X and Y be finite CW-complexes. There is a natural Z/2Z-graded exact se-
quence:

0→ K∗(X)⊗K∗(Y )
α−→ K∗(X × Y )

β−→ Tor(K∗(X),K∗(Y ))→ 0.

In this grading, degα = 0,deg β = 1.

HereK∗(X) = K0(X)⊕K1(X). The grading implies there are two exact sequence, where
one of the two ‘factors’ ofK∗(X×Y ) has even total degree and the other has odd total degree.

Remark. As Atiyah mentions, this is not a general formula for generalized cohomology theo-
ries. For instance, it fails for real K-theory.

Proposition 3.11. We have

K0(RP2 × RP4) ∼= Z⊕ (Z/2Z)2 ⊕ Z/4Z, K1(RP2 × RP4) ∼= Z/2Z.

Proof. This is a direct application of Proposition 3.9 and Atiyah’s Künneth formula. We have
K0(RP2) = Z ⊕ Z/2Z),K1(RP2) = 0,K0(RP4) = Z ⊕ Z/4,K1(RP4) = 0. Indeed, we have the
following exact sequences.

0→ K0(RP2)⊗K0(RP4)⊕K1(RP2)⊗K1(RP4)→ K0(RP2 × RP4)→
Tor(K0(RP2),K1(RP4))⊕ Tor(K1(RP2),K0(RP4))→ 0

so

0→ Z⊕ (Z/2Z)2 ⊕ Z/4Z→ 0→ 0

and

0→ K0(RP2)⊗K1(RP4)⊕K1(RP2)⊗K0(RP4)→ K1(RP2 × RP4)→
Tor(K0(RP2),K0(RP4))⊕ Tor(K1(RP2),K1(RP4))→ 0

so
0→ 0→ K0(RP4)→ Z/2Z→ 0

The result follows.

Now let us see what happens when we use the Atiyah-Hirzebruch spectral sequence. By the
Künneth formula, we have

H i(RP2 × RP4;Z) =



Z i = 0

0 i = 1

(Z/2)2 i = 2

Z/2 i = 3

(Z/2)2 i = 4

Z/2 i = 5

Z/2 i = 6.
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Consider the Atiyah-Hirzebruch sequence for reduced K-theory; we will drawwhat theE3 page
looks like.

0 0 (Z/2)2 Z/2 (Z/2)2 Z/2 Z/2

0 0 (Z/2)2 Z/2 (Z/2)2 Z/2 Z/2

d3 d3

Figure 2: E3-page

All higher differentials vanish for degree reasons. Thus we know that the even terms must
give a filtration of (Z/2)2⊕Z/4. This implies that one of the two d3 arrows drawn is 0, and the
other is surjective. This also agrees with our calculation thatK1(RP2 × RP4) = Z/2. We have
thus shown that the d3 differential is not always 0.

In fact, it is not hard to go further and show that d3 is a stable cohomology operation. Stable
cohomology operations of degree 3 are classified by

Hn+3(K(Z, n);Z) = Z/2 (n ≥ 3).

Thus there is a unique nonzero one, which is given by the composition

Hn(X;Z)
ρ2−→ Hn(X;Z/2)

Sq2−−→ Hn+2(X;Z/2)
β−→ Hn+3(X;Z),

where ρ is reductionmodulo 2 and β is the Bockstein homomorphism2. Let us denote it by ˜Sq3.
We then have the following proposition.

Proposition 3.12. The differential d3 of the Atiyah-Hirzebruch spectral sequence is given by

d3 = ˜Sq3 : Hn(X;Z)→ Hn+3(X;Z).

In [4], 39.3, this is proven by exhibiting a different space (from RP2 × RP4) where d3 does
not vanish.
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