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1 Introduction

We will explain Weil’s proof of his famous conjectures for curves. For the Riemann hypothe-
sis, we will follow Grothendieck’s argument [1]. The main tools used in these proofs are basic
results in algebraic geometry: Riemann-Roch, intersection theory on a surface, and the Hodge
index theorem.

For references: in Section 2 we used [3], while the rest can be found in Hartshorne [2] V.1
and Appendix C (some of it in the form of exercises).

1.1 Statements of the Weil conjectures

We recall the statements. Let X be a smooth projective variety of dimension n over Fq. We
define its zeta function by

Z(X, t) := exp

( ∞∑
r=1

Nr
tr

r

)
,

where Nr is the number of closed points ofX where considered over Fqr .

Theorem 1.1 (Weil conjectures). Use the above notation.

1. (Rationality) Z(X, t) is a rational function of t.

2. (Functional equation) Let E be the Euler characteristic ofX considered over C. Then

Z

(
1

qnt

)
= ±qnE/2tEZ(t).

3. (Riemann hypothesis) We can write

Z(t) =
P1(t) · · ·P2n−1(t)

P0(t) · · ·P2n(t)

where P0(t) = 1 − t, P2n(t) = 1 − qnt and all the Pi(t) are integer polynomials that can be
written as

Pi(t) =
∏
j

(1− αijt).

Finally, |αij | = qi/2.

4. (Betti numbers) The degree of the polynomials Pi are the Betti numbers ofX considered over
C.
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Note that d
dt logZ(X, t) =

∑∞
r=0Nr+1t

r. Then with some elementary manipulation, we can
connect this zeta function with a possibly more familiar-looking ‘arithmetic zeta function’:

Z(X, q−s) = ζX(s) :=
∏
x

1

1−N(x)−s
,

where the product ranges over all closed points x ∈ X, and N(x) is the magnitude of the
residue field of x. Under this interpretation, we see that the Riemann hypothesis states that
the roots of ζX(s) have real part 1

2 ,
3
2 , · · · ,

2n−1
2 .

1.2 Approaches

As is well-known, all the Weil conjectures with the exception of the Riemann hypothesis can
be explained through Grothendieck’s construction of the étale cohomology of schemes. The
Riemann hypothesis was proven by Deligne, who incorporated certain analytical tools into
his proof. Now there are multiple proofs. In the case of curves, there is also a more elemen-
tary proof due to Bombieri. Nevertheless, the proof we follow is instructive because it illus-
trates the use of fundamental results in algebraic geometry. However, it does not consider the
action of the Frobenius morphism, which is at the heart of the approach through étale co-
homology. Combining these perspectives (along with much deeper considerations, for sure),
Grothendieck was led to the standard conjectures, from which the Riemann hypothesis (for all
varieties) would follow as a corollary. These are still open.

2 Rationality, functional equation, and Betti numbers

2.1 Rationality and Betti numbers

To prove the rationality of the zeta function of a curve, we will need the following results from
algebraic geometry.

Theorem 2.1 (Riemann-Roch). LetX be a smooth projective curve over k of genus g with canon-
ical divisorK. Then for any divisorD, we have

l(D)− l(K −D) = degD − g + 1.

Proposition 2.2. [[2], Prop. II.7.7] Let D be a divisor of X. Then the set of effective divisors of
X linearly equivalent toDmay be identified with the set {H0(X,L(D))\0}/k∗ in the following way.

Take 0 6= s ∈ H0(X,L(D)) and let (Ui, φi) be trivializations of L(D). Then define the associ-
ated Cartier divisor (s)0 = {(Ui, φi(s))}.

Now we attack rationality. We have

Z(X, q−s) =
∏
x

1

1−N(x)−s
⇒ Z(X, t) =

∞∏
r=1

(1− tr)Mr ,

whereMr is the number of closed points x ∈ X with residue field Fqr . Expanding this, we see
that Z(X, t) is nothing other than the generating function of the number of effective divisors
of degree r. (!) Let us denote this sequence by Ar.

By Proposition 2.2, the number of effective divisors linearly equivalent to a fixedD is equal
to ql(D)−1

q−1 . The key point is that by Riemann-Roch, for degD > 2g−2, this number is explicitly
computable. Namely, in this case l(D) = degD−g+1. Moreover, the number of distinct linear
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equivalence classes is given by |Cl0(X)|, since in this range every divisor is linearly equivalent
to an effective one1. Thus, wemay break the zeta function into two parts: Z(X, t) = Z1(X, t)+
Z2(X, t) with

Z1(X, t) =

2g−2∑
r=0

Art
r

and

Z2(X, t) =
∑

r>2g−2

Art
r = |Cl0(X)|

∑
r>2g−2

qr−g+1 − 1

q − 1
tr =

|Cl0(X)|
q − 1

· (q
g − 1)t2g−1 + (q − qg)t2g

(1− t)(1− qt)
.

Summing Z1(X, t) and Z2(X, t) yields the rationality statement. Moreover, the coefficients
of the numerator and denominator are integers. By analyzing the numerator and showing it
has degree 2g, we will obtain the statement for the Betti numbers.

First, note that A0 = 1; this ensures that the numerator has constant term 1. As for the
coefficient of t2g, note that the canonical divisor contributes via l(K) = g, and allD of degree
2g − 2 contribute via l(D) = g − 1. Thus,

A2g−2 =
|Cl0(X)|
q − 1

(qg−1 − 1) + qg−1.

This gives that the coefficient of t2g in the numerator is precisely qg 6= 0. In fact, this shows
that we can write

Z(X, t) =

∏2g
i=1(1− αit)

(1− t)(1− qt)

where the αi are algebraic integers that come in conjugate pairs, and moreover
∏2g

i=1 αi = qg.

2.2 Functional equation

We would like to show that
Z(X,

1

qt
) = q1−gt2−2gZ(X, t).

The idea will be to split Z(X, t) into two summands for which we can verify this equal-
ity. These will not quite be the Z1 and Z2 above. Indeed, if we want to compare Z2(X, t) and

Z2(X,
1

qt
), note that there is a |Cl0(X)| factor which does not show up with Z1. Note that this

term appears as long as degD ≥ g, so that all theseD are linearly equivalent to effective ones.
Thus, instead of starting from 2g − 1, we start from g. We set

Z4(X, t) = |Cl0(X)|
∑

degD≥g

qdegD−g+1 − 1

q − 1
tdegD = |Cl0(X)| tg

(1− t)(1− qt)
.

Here, as below, we are really summing over linear equivalence classes of divisors. We get

qg−1t2g−2Z4(X,
1

qt
) = |Cl0(X)|qg−1t2g−2 (qt)−g

(1− (qt)−1)(1− t−1)
= |Cl0(X)| tg

(1− t)(1− qt)
,

so Z4(X, t) = qg−1t2g−2Z4(X, 1
qt).

1Technically, we are assuming g > 0 for everything to make sense, which is of course harmless.
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What remains? We set

Z3(X, t) = Z(X, t)− Z4(X, t) = Z1(X, t)−
2g−2∑

degD=g

qdegD+1−g − 1

q − 1
tdegD.

We wish to verify the functional equation for Z3. This is basically just a computation. The
main insight is to consider the involution of divisors of degrees from 0 through 2g − 2 defined
by D 7→ K −D. Note that we can really consider all such D when considering their contribu-
tion to Z(X, t), because those that are not effective will contribute q0−1

q−1 t
r = 0. We begin the

computation by recalling that

Z1(X, t) =

2g−2∑
degD=0

ql(D) − 1

q − 1
tdegD.

On the other hand, ‘what we want’ is

qg−1t2g−2Z1(
1

qt
) =

2g−2∑
degD=0

ql(K−D) − ql(K−D)−l(D)

q − 1
t2g−2−degD =

2g−2∑
degD=0

ql(D) − ql(D)−l(K−D)

q − 1
tdegD.

by applying the involution in the last step. It simply remains to do the computation for the
extra piece ofZ3(X, t) and verify that the differences cancel out. This is indeed the case through
another application of the involution. We leave this last calculation to the reader2.

3 Intersection theory on a surface

The proof of the Riemann hypothesis for curves that we will explain involves studying the self-
intersection number of the graph of the Frobenius morphism. To understand it, we will begin
by building up basic intersection theory on a surface. In general, intersection theory is (to
put it mildly) a very intricate affair. But many simplifications occur in the case of curves on
surfaces, which makes this job not too difficult.

3.1 Definitions

By surface, we refer to a smooth projective variety of dimension 2 over an algebraically closed
field k. By a curve on a surface, we mean an effective divisor on the surface. We say that two
curves C andDmeet transversely if, for every common point P , their local defining equations
f, g generate the maximal ideal of the local ring OP,X .

We would like to determine an intersection pairing DivX ×DivX → Z that expresses the
intersection number of two curves on a surface. Naturally, if C and D are nonsingular and
meet transversely at d points, their intersection number should beC ·D = d. One may want to
extend this to any two curves that do not share a common component by defining the intersec-
tion multiplicity at a common point P to be the length of OP,X/(f, g). This does indeed work,
but here are two good reasons not to take it as a definition. First, there is no clear way to extend
this to self-intersections, whereas in reality this notion exists and is important! Second, this
is not a priori a good definition, because one has not checked that it fulfills the basic axioms
we would like to impose on the intersection number. In fact, the obvious generalization of this
definition to higher dimensions is wrong! One must account for higher Tors, as in Serre’s Tor

2One might be skeptical because applying the involution beginning from degD = g ‘misses’ the case degD =
g − 1. But note that in this case, the difference coming from Z1 is also 0. (!)
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formula.

Instead, we would like to impose the following axioms.

1. If nonsingular C,D meet transversely at d points, then C ·D = d.

2. C ·D = D · C.

3. (C1 + C2) ·D = C1 ·D + C2 ·D.

4. The intersection pairing depends only on the linear equivalence class of the curves.

The uniqueness of the pairing works in the following way. Let C andD be any divisors; we
wish to use the axioms to express CḊ in terms of intersection numbers of transverse nonsin-
gular curves. First, fix a very ample divisor H on X such that C + H and D + H are also very
ample. By Bertini’s theorem, almost all curves in the complete linear system of a very ample
divisor are nonsingular meet any finite number of irreducible curves transversely. Then we can
choose mutually transverse nonsingular curves C ′ ∈ |C +H|, D′ ∈ |D+H|, E′, F ′ ∈ |H|. Then
we are forced to have C ·D = (C ′ − E′) · (D′ − F ′), which is determined.

Next, to show this iswell-defined, wemust show this construction is independent of choices.
Since we can express every divisor as a difference of two very ample ones, it suffices to check
this restricted to very ample divisors. That is, given C andD very ample, we need to show that
C ′ ·D′ = C ′ ·D′′ where C ′ ∈ |C| is nonsingular and we choose D′, D′′ ∈ |D| nonsingular and
transverse to C ′. This follows from the following proposition.

Proposition 3.1. Let C be an irreducible nonsingular curve onX and letD be a curve meeting C
transversely. Then

|C ∩D| = degC(L(D)⊗OC).

Proof. Tensoring the exact sequence

0→ L(−D)→ OX → OD → 0

with OC , we obtain an exact sequence

0→ L(−D)⊗OC → OC → OC∩D → 0.

ThenL(D)⊗OC corresponds to the divisorOC∩D onC, whose degree is simply |C∩D| because
C andD meet transversely.

Now that we have constructed the intersection pairing, we can analyze local intersection
multiplicities and self-intersection numbers.

Proposition 3.2. Let C and D be curves on X with no common irreducible component. For each
P ∈ C ∩D, define (C ·D)P = lenOP,X/(f, g). Then

C ·D =
∑

P∈C∩D
(C ·D)P .

Proof. Note that dimkH
0(X,OC∩D) =

∑
P∈C∩D(C · D)P . Then using additivity of the Euler

characteristic in
0→ L(−D)⊗OC → OC → OC∩D → 0,

we get ∑
P∈C∩D

(C ·D)P = χ(OC)− χ(L(−D)⊗OC).
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Note that if C andD did intersect transversely, this would be the correct formula. We also
see that this value only depends on the linear equivalence class ofD, and therefore C as well.
Therefore we may replace C and D with differences of transverse nonsingular curves, which
will give the desired intersection number C ·D.

Now define the self intersection number C2 = C · C.

Proposition 3.3. The self-intersection number is given by

C2 = degC NC/X ,

where NC/X = Hom(I/I2,OC) is the normal sheaf.

Proof. By definition, we have C2 = degC(L(C)⊗OC). The dual of this sheaf, L(−C)⊗OC , is
isomorphic to I/I2. The result follows.

Example 3.4. Let C be a curve of genus g and consider the diagonal Γ ∈ C ×k C. Then NΓ/C×C
is the dual of the pullback of the ideal sheaf∆∗(I/I2), which is none other than the sheaf of differ-
entials. This coincides with the canonical sheaf, which has degree 2g − 2. Thus Γ2 = 2− 2g.

3.2 Riemann-Roch for surfaces

First let us prove the adjunction formula.

Theorem 3.5 (Adjunction Formula). Let Y ⊂ X be a smooth subvariety of codimension r of a
smooth variety. Then

ωY
∼= ωX ⊗ ∧rNY/X .

If r = 1, then
ωY
∼= ωX ⊗ L(Y )⊗OY .

Proof. Begin with the exact sequence

0→ I/I2 → ΩX ⊗OY → ΩY → 0.

Taking highest exterior powers, we get ωX ⊗ OY
∼= ∧r(I/I2) ⊗ ωY ⇒ ωY

∼= ωX ⊗ ∧rNY/X , as
desired.

If r = 1, thenNY/X
∼= (I/I2)∨ ∼= (L(−Y )⊗OY )−1) ∼= L(Y )⊗OY , and the result follows.

Corollary 3.6 (adjunction formula). Let C be a nonsingular curve of genus g on the surface X,
which has canonical divisorK. Then

2g − 2 = C · (C +K).

Proof. Taking degrees in the adjunction formula above, we have 2g − 2 = degωC = deg(ωX ⊗
L(C)⊗OC). Viewing ωX ⊗ L(C) as a curve onX, we get that the RHS is just C · (C +K).

We now wish to prove the following theorem.

Theorem 3.7 (Riemann-Roch for surfaces). LetD be a divisor on a surfaceX. Then

l(D)− dimH1
k(X,L(D)) + l(K −D) = χ(L(D)) =

1

2
D · (D −K) + χ(OX).
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Proof. The first equality is just Serre duality. As usual, write D = C − E where C and E are
nonsingular. Considering the exact sequences

0→ L(C − E)→ L(C)→ L(C)⊗OE → 0

0→ OX → L(C)→ L(C)⊗OC → 0,

we obtain χ(L(D)) = χ(OX) + χ(L(C) ⊗ OC) − χ(L(C) ⊗ OE). We can compute the last two
terms using Riemann-Roch for curves on C and E. We have

χ(L(C)⊗OC) = deg(L(C)⊗OC)− gC + 1.

By the adjunction formula, gC = 1
2C · (C +K) + 1. Doing the same computation for the other

term, we put it all together and obtain the desired result.

3.3 Hodge index theorem

LetH be a very ample divisor on a surfaceX. Then for a curve C onX, the degree of C under
the embedding given by H into Pn coincides with C ·H. Indeed, recall that the degree of C is
defined as the linear coefficient of the Hilbert polynomial, which is given by the Euler charac-
teristic of χ(OC(n)). As usual we can reduce to the case of C andH and C having no common
irreducible component. Then as before we can show that the intersection number is given by
χ(OC)−χ(L(−H)⊗OC) = χ(OC)−χ(OC(−1)), which is the desired coefficient. In particular,
C ·H is positive. This fact holds for ample H, since a positive multiple of an ample divisor is
very ample. Then we see that if C ·H > K ·H, then (K − C) ·H < 0 so no linear equivalence
class ofK − C can be effective. Then l(K −D), so by Serre duality,H2(X,L(D)) = 0.

We use this to prove the following lemmawhichwill be used in the proof of theHodge Index
Theorem.

Lemma 3.8. Let H be an ample divisor on X, and let D be a divisor such that D · H > 0 and
D2 > 0. Then for all n >> 0, nD is linearly equivalent to an effective divisor.

Proof. By the previous result and the Riemann-Roch theorem, we have

l(nD) ≥ 1

2
(nD) · (nD −K) + χ(OX)

for n >> 0. This is clearly positive for n sufficiently large.

Theorem 3.9 (Hodge Index Theorem). LetH be an ample divisor on the surfaceX and letD be
a nonzero divisor withD ·H = 0. ThenD2 < 0.

Proof. Otherwise, first consider the case D2 > 0. We have that D + nH is ample for some
sufficiently large n. Then D · (D + nH) = D2 > 0, so by the previous lemma mD is linearly
equivalent to an effective divisor form >> 0. This contradicts the fact thatD ·H = 0.

Now sayD2 = 0. SinceD 6= 0, there is some E withD ·E 6= 0. Let E′ = (H2)E − (E ·H)H.
Then D · E′ 6= 0 and E′ · H = 0. Then for sufficiently large n, we have (nD + E′)2 > 0 and
(nD + E′) ·H = 0. But this is impossible by the previous argument.

Finally, we state the Nakai-Moishezon criterion for ampleness.

Theorem 3.10 (Nakai-Moishezon criterion). A divisor D on a surface X is ample if and only if
D2 > 0 andD · C > 0 for all irreducible curves C inX.

For a proof, see [2], V.1.10.
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4 Riemann hypothesis for curves

The proof of the Riemann hypothesis for curves rests on the Hasse-Weil bound, which states
that

N := |C(Fq)| = q + 1− a where |a| ≤ 2g
√
q.

This ‘square-root error term’ bound easily implies the Riemann hypothesis using the func-
tional equation, similar to the case of the Riemann zeta function. We will use the intersection
theory developed in the previous section to prove the Hasse-Weil bound.

4.1 Proof of the Hasse-Weil bound

The idea is to use intersection theory of the diagonal ∆ and the graph of the Frobenius Γ on
the surface C ×Fq

C. Note that we are taking C over Fq; we will henceforth drop the subscript
in the product. Let us compute the pairwise intersection numbers. First, we have already seen
that

∆2 = 2− 2g.

Next, it is intuitively true that ∆ · Γ = N , because the points fixed by the Frobenius are
precisely the ones defined overFq. However, we ought to check that these points are unreduced
to ensure that this count gives the correct intersection number. It suffices to check this on
affine space. This is just saying that

k∏
i=1

SpecFq[xi]/(x
q
i − xi)

is reduced, which is clear by taking derivatives. Thus∆ · Γ = N .

Finally, we compute Γ2. To do this, note that Γ is the pullback of ∆ under the Frobenius.
We also have that, in general, f∗f∗ is multiplication by deg f on divisors, and f∗, f∗ are adjoint
with respect to intersection product. Setting f to be the Frobenius, this gives

Γ2 = (f∗∆, f∗∆) = (f∗f
∗∆,∆) = q∆2 = q(2− 2g).

Alternatively, we may use the adjunction formula. This gives

2g − 2 = Γ2 + Γ ·KC×C .

We can express KC·C as the sum of the pullbacks p∗1 · KC + p∗2KC . Now note that Γ inter-
sects C × pt and pt×C with multiplicity 1 and q. Since degKC = 2g − 2, this gives γ2 =
2g − 2− (q + 1)(2g − 2) = q(2− 2g), as desired.

We will now relate this intersection numbers by means of a general inequality that ap-
parently goes all the way back to the classical Italian school. Apparently, Grothendieck [1],
followingMattuck-Tate, simplified the proof through the Hodge index theorem and the Nakai-
Moishezon criterion.

Theorem 4.1. Let X = C × C ′ and let l = C × pt,m = pt×C. If D is a divisor on X such that
D · l = a andD ·m = b, then

D2 ≤ 2ab.

Proof. First, we claim that ifH is ample, we have (D2)(H2) ≤ (D ·H)2 for anyD. Indeed, apply
the Hodge index theorem to E = (H2)D − (H ·D)H.
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Next, letH = l+m,E = l−m. By the Nakai-Moishezon criterion,H is ample. Then apply
the previous result to the divisor

(H2)(E2)D − (E2)(D ·H)H − (H2)(D · E)E.

Expanding this gives preciselyD2 ≤ 2ab.

We now conclude the proof of the Hasse-Weil bound by applying the previous inequality to
D = rΓ + s∆ for r, s ∈ Z. We haveD · l = rq + s andD ·m = r + s. Expanding, we get

(r2q + s2)(2− 2g) + 2rsN ≤ 2(rq + s)(r + s).

Simplifying, we get
|N − q − 1| ≤

∣∣∣rq
s

+
sg

r

∣∣∣ ,
where the absolute values comes from whether rs is positive or negative. Finally, we note that
the RHS can be made arbitrarily close to 2g

√
q, so we are done.

4.2 Completion of the proof

We have now shown that |N − q − 1| ≤ 2g
√
q. Doing this for each Fqr , we have that ar :=

|Nr − qr − 1| ≤ 2g
√
qr. Previously, we showed we can write the zeta function as

Z(X, t) =

∏2g
i=1(1− αit)

(1− t)(1− qt)

where the αi are algebraic integers that come in conjugate pairs, and moreover
∏2g

i=1 αi = qg.
The goal now is to show that |αi| =

√
q. Since we know

∏2g
i=1 αi = qg, it is enough to show that

|αi| ≤
√
q.

We must relate ar to the αi. This is not terribly difficult, as we can compute∑
r≥1

Nrt
r−1 =

d

dt
log(Z(X, t)) =

d

dt
log

∏2g
i=1(1− αit)

(1− t)(1− qt)

=

2g∑
i=1

−αi

1− αit
+

1

1− t
+

q

1− qt

=
∑
r≥1

(qr + 1−
2g∑
i=1

αr
i )t

r−1.

Thus, we have ar =
∑2g

i=1 α
r
i . We have to use the fact that |ar| ≤ 2gqr/2 to show that each αi

has absolute value atmost q1/2. To do this, assume for sake of contradiction that |alpha1| > q1/2

with |α1|maximal and write ∑
r≥1

art
r =

∑ αit

1− αit
.

Then as t → α−1
1 , the LHS converges while the RHS diverges, contradiction. Thus, |αi| ≤

q1/2 ⇒ |αi| = q1/2, as desired.
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